Abstract:
Systems and methods for fuelling a plurality of cylinders of an internal combustion engine are disclosed. The system includes a dedicated exhaust gas recirculation system for recirculating exhaust gas flow from at least one dedicated cylinder of an engine into an intake system prior to combustion. The system further includes a fueling system to provide a first flow of fuel to each of the plurality of cylinders and a second flow of fuel to each of the dedicated cylinders that is in addition to the first flow of fuel.
Abstract:
Systems, apparatus, and methods are disclosed that include a divided exhaust engine with at least one primary EGR cylinder and a plurality of non-primary EGR cylinders. The systems, apparatus and methods control the amount of recirculated exhaust gas in a charge flow in response to EGR fraction deviation conditions.
Abstract:
A method includes operating a spark ignition engine and flowing low pressure exhaust gas recirculation (EGR) from an exhaust to an inlet of the spark ignition engine. The method includes interpreting a parameter affecting an operation of the spark ignition engine, and determining a knock index value in response to the parameter. The method further includes reducing a likelihood of engine knock in response to the knock index value exceeding a knock threshold value.
Abstract:
Systems and methods for internal combustion engine operation with exhaust gas recirculation and turbocharging are disclosed. The systems include an exhaust gas recirculation loop for recirculating exhaust gas flow from a first portion of the cylinders of the engine into an intake system prior to combustion. The system further includes a turbine with first and second inlets for receiving exhaust gas flows from respective first and second parts of the exhaust gas of the remaining portion of the cylinders.
Abstract:
A supercharger device is employed in response to engine braking events and transient events to provide further compression of the intake flow and boost engine braking power and torque response. The supercharger device can be, for example, a clutched supercharger or an electronic compressor connected in the intake system of the internal combustion engine.
Abstract:
Systems and methods for internal combustion engine operation with exhaust gas recirculation and turbocharging are disclosed. The systems include an exhaust gas recirculation loop for recirculating exhaust gas flow from a first portion of the cylinders of the engine into an intake system prior to combustion. The system further includes a turbine with first and second inlets for receiving exhaust gas flows from respective first and second parts of the exhaust gas of the remaining portion of the cylinders.
Abstract:
Systems, methods and techniques for exhaust gas recirculation are provided. The system includes mixing exhaust flow from at least one cylinder of an engine with air in an air intake system prior to combustion. The exhaust flow from the at least one cylinder is accumulated prior to mixing and distributed into the intake air system in a controlled manner.
Abstract:
A supercharger device is employed in response to engine braking events and transient events to provide further compression of the intake flow and boost engine braking power and torque response. The supercharger device can be, for example, a clutched supercharger or an electronic compressor connected in the intake system of the internal combustion engine.
Abstract:
Systems, apparatus, and methods are disclosed that include a divided exhaust engine with at least one primary EGR cylinder and a plurality of non-primary EGR cylinders. The systems, apparatus and methods control the amount of recirculated exhaust gas in a charge flow in response to EGR fraction deviation conditions.
Abstract:
An exhaust system for an engine include a first exhaust system portion that receives exhaust from one or more combustion chambers of the engine. The exhaust system also includes an oxidation catalyst having an inlet and an outlet. The inlet of the oxidation catalyst is in fluid communication with the first exhaust system portion and receives exhaust from the one or more combustion chambers of the engine. The exhaust system also includes a second exhaust system portion that receives exhaust gases downstream from the outlet of the oxidation catalyst. A waste heat recovery system is in thermal communication with the second exhaust system portion that receives exhaust gases from the outlet of the oxidation catalyst. In some instances, the exhaust system may omit other aftertreatment components.