Abstract:
A threshold circuit that uses capacitors to form a weighted sum of its inputs uses a two stage capacitor structure. The two stages form a compact structure that increases the number of input signals that can be handled and increases the flexibility in assigning the weights to the input signals. Capacitor electrodes for the input signals are arranged in two sets and the electrodes of each set are electrostatically coupled to first and second electrodes. Third and fourth electrodes, which extend from the first and second electrodes respectively, are electrostatically coupled to a unitary structure of fifth and sixth electrodes where their voltages are summed. The fifth and sixth electrodes are conductively connected to the gate of an FET threshold circuit that responds to the weighted and summed input signals.
Abstract:
A method of fabricating a bipolar transistor with a buried subcollector by forming a collector layer and a base layer in a semiconductor substrate. A polysilicon layer is deposited over the base layer and spaced emitter and base contact regions formed in the base layer. A mask is formed over the emitter and base contact regions and the substrate anisotropically etched to form pedestals with vertical sidewalls. A masking layer is formed on the vertical sidewalls, and a large angle ion implant used to introduce ions beneath the collector layer, thereby forming a subcollector region.
Abstract:
A method to reduce the inverse narrow width effect in NMOS transistors is described. An oxide liner is deposited in a shallow trench that is formed to isolate active areas in a substrate. A photoresist plug is formed in the shallow trench and is recessed below the top of the substrate to expose the top portion of the oxide liner. An angled indium implant through the oxide liner into the substrate is then performed. The plug is removed and an insulator is deposited to fill the trenches. After planarization and wet etch steps, formation of a gate dielectric layer and a patterned gate layer, the NMOS transistor exhibits an improved Vt roll-off of 40 to 45 mVolts for both long and short channels. The improvement is achieved with no degradation in junction or isolation performance. The indium implant dose and angle may be varied to provide flexibility to the process.
Abstract:
A pulse width modulation device with a power saving mode controlled by an output voltage feedback hysteresis circuit is used in a power supply. The present invention comprises a hysteresis comparison circuit extracting a feedback voltage, a high threshold voltage and a low threshold voltage, and the voltages are executed by a comparison and hysteresis operation to a output blanking signal, a PWM control unit extracting a detecting current signal and the feedback voltage to output a modulation signal after a comparison operation is executed; an OR gate circuit connected to the hysteresis comparison circuit and the PWM control unit for receiving the blanking signal and the modulation signal to output a reset signal; and a synchronization signal output unit connected to the OR gate circuit for receiving the reset signal and an oscillation signal to output the drive signal.
Abstract:
The continuous conduction mode (CCM) boost voltage power factor correction apparatus with an average-current control mode of the present invention uses resettable integrators to integrate the difference voltage signal outputted from the voltage error amplifier and the input current signal obtained from detection. The integration results are then compared to control the duty cycle of the switch. Thereby, the input current and the input voltage in the AC/DC electrical power converter have a proportion relation and their phases are the same as each other. The components used in this control method are simpler than the PFC circuit of the prior art. It is easy to integrate in one chip with fewer pins. The apparatus of the present invention has a high power factor and a low total harmonic distortion (THD).
Abstract:
A pulse width modulation device with a power saving mode controlled by an output voltage feedback hysteresis circuit is used in a power supply. The present invention comprises a hysteresis comparison circuit extracting a feedback voltage, a high threshold voltage and a low threshold voltage, and the voltages are executed by a comparison and hysteresis operation to a output blanking signal, a PWM control unit extracting a detecting current signal and the feedback voltage to output a modulation signal after a comparison operation is executed; an OR gate circuit connected to the hysteresis comparison circuit and the PWM control unit for receiving the blanking signal and the modulation signal to output a reset signal; and a synchronization signal output unit connected to the OR gate circuit for receiving the reset signal and an oscillation signal to output the drive signal.
Abstract:
Dynamic Random Access Memory (DRAM) cells are formed in a P well formed in a biased deep N well (DNW). PMOS transistors are formed in N wells. The NMOS channels stop implant mask is modified not to be a reverse of the N well mask in order-to block the channels stop implant from an N+ contact region used for DNW biasing. In DRAMS and other integrated circuits, a minimal spacing requirement between a well of an integrated circuit on the one hand and adjacent circuitry on the other hand is eliminated by laying out the adjacent circuitry so that the well is located adjacent to a transistor having an electrode connected to the same voltage as the voltage that biases the well. For example, in DRAMs, the minimal spacing requirement between the DNW and the read/write circuitry is eliminated by locating the DNW next to a transistor precharging the bit lines before memory accesses. One electrode of the transistor is connected to a precharge voltage. This electrode overlaps the DNW which is biased to the same precharge voltage. This electrode provides the DNW N+ contact region.
Abstract:
A method for forming within a substrate employed within a microelectronics fabrication a field effect transistor with attenuated drain leakage current. There is provided a silicon substrate within which are fabricated nMOS field effect transistors (FET) with lightly-doped n-type drain regions (nLDD) employing arsenic (As) dopant. There is then implanted indium (In) dopant atoms adjacent to the As diffused junction to form a p-type pocket therein. There is then avoided the customary high temperature rapid thermal annealing (RTA) step and instead employed a thermal annealing for 2 hours at 750 degrees centigrade, whereupon the implanted indium atom undergo transient enhanced diffusion (TED) to form a graded junction profile, resulting in attenuated drain leakage current and no increased reverse short channel effect from the strong segregation of indium into silicon oxide.
Abstract:
Within a method for fabricating a microelectronic fabrication there is first provided a substrate. There is then formed over the substrate a microelectronic device. There is then formed over the microelectronic device a passivating dielectric layer formed from a passivating dielectric material selected from the group consisting of fluorosilicate glass (FSG) passivating dielectric materials, atmospheric pressure chemical vapor deposited (APCVD) passivating dielectric materials, subatmospheric pressure chemical vapor deposited (SACVD) passivating dielectric materials and spin-on-glass (SOG) passivating dielectric materials to form from the microelectronic device a passivated microelectronic device. Finally, there is then annealed thermally, while employing a thermal annealing method employing an atmosphere comprising hydrogen, the passivated microelectronic device to form a stabilized passivated microelectronic device. The method is a “pure H2 (100%)” alloy recipe to use after contact opening or metal-1 formation.
Abstract:
The present invention provides a process and a structure for increasing a capacitance of a stack capacitor. The process includes steps of: a) forming a contact hole on a silicon substrate having an oxide layer, b) forming a polysilicon contact plug of a first polysilicon layer in the contact hole; c) forming a second gibbous polysilicon layer on a surface of the contact plug, and d) forming a third polysilicon layer above the gibbous polysilicon layer and a portion of the oxide layer to form the stack capacitor, wherein the gibbous polysilicon layer increases the capacitance of the stack capacitor.