摘要:
A process for fabricating a semiconductor device, including applying an immersion lithography medium to a surface of a semiconductor wafer; exposing a material on the surface of the semiconductor wafer to electromagnetic radiation having a selected wavelength; and applying supercritical carbon dioxide to the semiconductor wafer to remove the immersion lithography medium from the surface of the semiconductor wafer. In one embodiment, the process includes recovery of the immersion lithography medium.
摘要:
A method of reflective lithography includes directing an asymmetric radiation (light) beam onto a reticle of a reflective lithography system. The asymmetry in the shape of the radiation beam may be used to compensate for a non-zero (non-normal) angle of incidence of the incident radiation. The radiation source shape may be configured to produce a substantially-symmetric output from the reticle. The shape of the radiation source may be configurable by any of a variety of suitable methods, for example by use of a configurable reflective device such as a fly's eye mirror, or by use of one or more suitable mirrors, lenses, and/or slits.
摘要:
Methods are provided for forming contacts for a semiconductor device. The methods may include depositing various materials, such as polysilicon, nitride, oxide, and/or carbon materials, over the semiconductor device. The methods may also include forming a contact hole and filling the contact hole to form the contact for the semiconductor device.
摘要:
A method of manufacturing a MOSFET semiconductor device comprises forming a gate electrode over a substrate and a gate oxide between the gate electrode and the substrate; forming source/drain extensions in the substrate; forming first and second sidewall spacers; implanting dopants within the substrate to form source/drain regions in the substrate adjacent to the sidewalls spacers; laser thermal annealing to activate the source/drain regions; depositing a layer of nickel over the source/drain regions; and annealing to form a nickel silicide layer disposed on the source/drain regions. The source/drain extensions and sidewall spacers are adjacent to the gate electrode. The source/drain extensions can have a depth of about 50 to 300 angstroms, and the source/drain regions can have a depth of about 400 to 1000 angstroms. The annealing is at temperatures from about 350 to 500° C.
摘要:
An exemplary embodiment relates to a mask for integrated circuit fabrication equipment. The mask includes a multilayer film and an amorphous carbon layer above the multilayer film. The multilayer film is at least partially relatively reflective to radiation having a wavelength of less than 70 nanometers.
摘要:
A method is provided for eliminating uneven heating of substrate active areas during laser thermal annealing (LTA) due to variations in gate electrode density. Embodiments include adding dummy structures, formed simultaneously with the gate electrodes, to “fill in” the spaces between isolated gate electrodes, such that the spacing between the gate electrodes and the dummy structures is the same as the spacing between the densest array of device structures on the substrate surface. Since the surface features (i.e., the gate electrodes and the dummy structures) appear substantially uniform to the LTA laser, the laser radiation is uniformly absorbed by the substrate, and the substrate surface is evenly heated.
摘要:
An exemplary embodiment relates to a method of using an amorphous carbon layer to prevent photoresist poisoning. The method includes doping a first amorphous carbon layer located above a substrate, providing an oxide layer above the first amorphous carbon layer where the oxide layer has a pinhole, and providing a second amorphous carbon layer adjacent to the oxide layer. The second amorphous carbon layer is undoped and the second amorphous carbon layer helps prevent photoresist poisoning.
摘要:
Dopant deactivation, particularly at the Si/silicide interface, is avoided by forming deep source/drain implants after forming silicide layers on the substrate and activating the source/drain regions by laser thermal annealing. Embodiments include forming source/drain extensions, forming metal silicide layers on the substrate surface and gate electrode, forming preamorphized regions under the metal silicide layers in the substrate, ion implanting to form deep source/drain implants overlapping the preamorphized regions and extending deeper into the substrate then the preamorphized regions, and laser thermal annealing to activate the deep source/drain regions.
摘要:
Semiconductor devices with reduced NiSi/Si interface contact resistance are fabricated by forming preamorphized regions in a substrate at a depth overlapping the subsequently formed NiSi/Si interface, ion implanting impurities to form deep source/drain implants overlapping the preamorphized regions deeper in the substrate and laser thermal annealing to activate the deep source/drain regions. Nickel silicide layers are then formed in a main surface of the substrate and on the gate electrode. Embodiments include forming deep source/drain regions with an activated impurity concentration of 1×1020 to 1×1021 atoms/cm3 at the NiSi/Si interface.
摘要:
An exemplary embodiment relates to a method of using amorphous carbon in replacement gate integration processes. The method can include depositing an amorphous carbon layer above a substrate, patterning the amorphous carbon layer, depositing a dielectric layer over the patterned amorphous carbon layer, removing a portion of the deposited dielectric layer to expose a top of the patterned amorphous carbon layer, removing the patterned amorphous carbon layer leaving an aperture in the dielectric layer, and forming a metal gate in the aperture of the dielectric layer.