Abstract:
A driving apparatus for driving switching elements of a power conversion circuit. In the apparatus, a first determination unit determines whether or not a dead time that occurs immediately after a setting of discharge rate is changed is greater than the dead time assumed at the time of designing. When the dead time occurring immediately after the setting of discharge rate is changed is greater than the dead time assumed at the time of designing, a shift unit shifts in time at least one of transition to an OFF state of one of the upper-arm and lower-arm switching elements and transition to an ON state of the other of the upper-arm and lower-arm switching elements immediately after the transition to the OFF state so as to reduce a time difference between the transition to the OFF state and the transition to the ON state.
Abstract:
In a three phase inverter device, a smoothing capacitor, a bus bar at a positive electrode side and a bus bar at a negative electrode side are formed on a first surface of the circuit substrate. Electronic components containing a microcomputer, etc., a differential wiring pattern, a single wiring pattern and a current wiring pattern are formed on a second surface of the circuit substrate. A ground pattern is formed in the inside of the circuit substrate in order to separate the electronic components, the differential wiring pattern, the single wiring pattern and the current wiring pattern from the smoothing capacitor, the bus bar at the positive electrode side and the bus bar at the negative electrode side.
Abstract:
A temperature detecting device for a power conversion device is provided in which the number of components can be reduced. An exemplary embodiment of the temperature detecting device includes: a plurality of temperature detecting elements that are provided in correspondence with a plurality of temperature detection objects, each temperature detecting element outputting a signal having a correlation with the temperature of the temperature detection object by being supplied power by a common power source; and a temperature detector that detects the temperatures of the temperature detection objects based on the signals having correlation with the temperatures of the temperature detection objects outputted from the temperature detecting elements. The temperature detector detects an average temperature of at least two temperature detection objects among the plurality of temperature detection objects or respective temperatures of the plurality of temperature detection objects based on the output signals.
Abstract:
In a driving system, an applying module applies, in response to an input of an on or off command as a switching command, a switch signal to a target switching element as a high- or low-side switching element to switch the target switching element to be an on or off state. A measuring module measures a delay period defined as a time interval from a first time to a second time. The first time represents a time at which the switching command is switched from one of the on command and the off command to the other. The second time represents a time at which the target switching element is actually switched to be the on or off state. An adjusting module adjusts, based on the delay period, an input timing of a next switch signal applied from the applying module to the target switching element.
Abstract:
A temperature measuring apparatus is provided which includes a sensor assembly made up of sensing devices which are connected together to produce an output signal correlated with the temperature of a target object. The temperature measuring apparatus determines the number of the sensing devices of the sensor assembly and corrects the output signal so as to compensate for an error in determining the temperature of the target object which depends upon the number of the sensing devices.
Abstract:
In a drive unit for a switching element, a drive circuit changes the switching element between an on-state and an off-state, by controlling a potential difference between a reference terminal, which is one of a pair of ends of a current path of the switching element, and an opening-closing control terminal of the switching element. A determination section determines, if an on-operation command or an off-operation command is inputted as an operation signal for the switching element, whether or not the potential difference has reached a specific value toward which the potential difference shifts, in response to one of the operation commands, with respect to a threshold value by which the switching element is turned on. A forcible processing section removes charge for turning on the switching element from the opening-closing control terminal, if the determination section determines that the potential difference has not reached the specific value.
Abstract:
In the invention, a circuit control device controlling a semiconductor switching element having a control terminal and driven by voltage inputted to the control terminal, has an input voltage detector, a desired voltage setting portion and a control input generation portion. The input voltage detector detects inputted voltage to the switching element. The desired voltage setting portion sets a desired value of the voltage to be inputted to the switching element. The control input generation portion is connected to the control terminal of the switching element, the control input generation portion generating control input to the switching element such that the value to be detected by the input voltage detector closes to the set desired value. The desired voltage setting portion sets the desired value of the voltage on the basis of predetermined characteristics information and operating parameters of the switching element. The operating parameters include temperature of the switching element, Vce, Ice etc.
Abstract:
A switching element driver IC has one or more photocouplers, a driver circuit, a detection circuit and a setting circuit. The photocoupler receives setting data transmitted from a microcomputer, and transmits the received setting data to the setting circuit, wherein an input side as a high voltage side is electrically insulated from an output side as a low voltage side in the photocoupler. The setting circuit transmits the setting data to the driver circuit and the detection circuit. The driver circuit and the detection circuit operate on the basis of the received setting data. The setting data can be provided to the driver circuit and the detection circuit through the photocoupler and the setting circuit. This structure makes it possible to suppress increasing the number of terminals at the high voltage side of the switching element driver IC, and decrease the entire size of the switching element driver IC.
Abstract:
In a driver, a charging module stores negative charge on the gate of a switching element via a normal electrical path to charge the switching element upon a drive signal representing change of an on state to an off state. This shifts the on state of the switching element to the off state. An adjusting module changes a value of a parameter correlating with a charging rate of the switching element through the normal electrical path as a function of an input signal to the driver. The input signal represents a current flowing through the conductive path, a voltage across both ends of the conductive path, or a voltage at the gate. A disabling module disables the adjusting module from changing the value of the parameter if the drive signal represents the on state of the switching element.
Abstract:
In a driving system, an applying module apples, in response to an input of an on or off command as a switching command, a switch signal to a target switching element as a high- or low-side switching element to switch the target switching element to be an on or off state. A measuring module measures a delay period defined as a time interval from a first time to a second time. The first time represents a time at which the switching command is switched from one of the on command and the off command to the other. The second time represents a time at which the target switching element is actually switched to be the on or off state. An adjusting module adjusts, based on the delay period, an input timing of a next switch signal applied from the applying module to the target switching element.