Abstract:
A drive circuit drives driven switches connected in parallel with one another. The driven switches each include first, second main, and main control terminals. When a potential difference of the main control terminal with respect to the second main terminal becomes greater than or equal to a threshold voltage, the flow of current between the first and second main terminals is permitted. At least two driven switches have different threshold voltages. The drive circuit includes, for each driven switch, an electrical path electrically connecting the second main terminal or a negative voltage supply, which is at a negative voltage lower than the potential of the second main terminal, to the main control terminal. The impedance of each of the electrical paths is set so the potential difference increased by electric charge flowing into the electrical path through a parasitic capacitance of the driven switch becomes less than the threshold voltage.
Abstract:
An electronic apparatus includes a switching element which has a control terminal and is driven by controlling voltage of the control terminal, a driving power supply circuit which supplies voltage required for driving the switching element, an on-driving circuit which is connected to the driving power supply circuit and the control terminal of the switching element and is supplied with voltage from the driving power supply circuit, and which applies a constant current to the control terminal of the switching element to charge the control terminal, thereby turning on the switching element, and at least one diode which is connected between the on-driving circuit and the control terminal of the switching element. The on-driving circuit applies a constant current to the control terminal of the switching element through the diode.
Abstract:
In a driver, a charging module electrically charges the on-off control terminal of the switching element for turning on the switching element, and a limiting module performs a task of limiting a voltage at the on-off control terminal of the switching element by a predetermined voltage to thereby limit an increase of a current flowing between the input and output terminals of the switching element. A determining module determines whether the voltage at the on-off control terminal of the switching element deviates from the predetermined voltage while the limiting module is performing the limiting task. A correcting module corrects the voltage at the on-off control terminal of the switching element to be close to the predetermined voltage when it is determined that the voltage at the on-off control terminal of the switching element deviates from the predetermined voltage.
Abstract:
A drive circuit for a switching element includes: a first power supply; a second power supply; a power supply switching unit that switches the first and second power supplies for applying the drive voltage based on a drive command; and an output switching unit outputting an output voltage switching signal to the second power supply that the output voltage of the second power supply becomes zero in a part of a drive period of the switching element including at least a part of an on-drive period, and the output voltage becomes a predetermined voltage other than zero in a remaining part of the drive period including at least a part of an off-drive period.
Abstract:
In a drive circuit, a rate adjuster adjusts a charging speed of a MOSFET to be faster than the charging speed of an IGBT when a drive state changer changes the first switching element from the off state to the on state first, and changes the second switching element from the off state to the on state next. The rate adjuster also adjusts a discharging speed of the MOSFET to be faster than the discharging speed of the IGBT when the drive state changer changes the MOSFET from the on state to the off state first, and changes the IGBT from the on state to the off state next.
Abstract:
In a drive apparatus, a transmission unit mounted to a first region stops transmission of a pulse signal from a physical-quantity transmission terminal. The transmission unit transmits, from the failure information transmission terminal, a first signal indicative of an occurrence of the failure associated with the target switch when it is determined that the failure associated with the target switch has occurred, and transmits, from the physical-quantity transmission terminal, a second signal indicative of a content of the failure associated with the target switch. A controller mounted to a second region electrically isolated from the first region detects, based on the pulse signal from the physical-quantity transmission terminal, the physical quantity upon no input of the first signal to the controller. The controller identifies, based on the second signal transmitted from the physical-quantity transmission terminal, the content of the failure upon the first signal being input to the controller.
Abstract:
A temperature detecting device for a power conversion device is provided in which the number of components can be reduced. An exemplary embodiment of the temperature detecting device includes: a plurality of temperature detecting elements that are provided in correspondence with a plurality of temperature detection objects, each temperature detecting element outputting a signal having a correlation with the temperature of the temperature detection object by being supplied power by a common power source; and a temperature detector that detects the temperatures of the temperature detection objects based on the signals having correlation with the temperatures of the temperature detection objects outputted from the temperature detecting elements. The temperature detector detects an average temperature of at least two temperature detection objects among the plurality of temperature detection objects or respective temperatures of the plurality of temperature detection objects based on the output signals.
Abstract:
A driving apparatus for driving switching elements of a power conversion circuit. In the apparatus, a first determination unit determines whether or not a dead time that occurs immediately after a setting of discharge rate is changed is greater than the dead time assumed at the time of designing. When the dead time occurring immediately after the setting of discharge rate is changed is greater than the dead time assumed at the time of designing, a shift unit shifts in time at least one of transition to an OFF state of one of the upper-arm and lower-arm switching elements and transition to an ON state of the other of the upper-arm and lower-arm switching elements immediately after the transition to the OFF state so as to reduce a time difference between the transition to the OFF state and the transition to the ON state.
Abstract:
A temperature detecting device for a power conversion device is provided in which the number of components can be reduced. An exemplary embodiment of the temperature detecting device includes: a plurality of temperature detecting elements that are provided in correspondence with a plurality of temperature detection objects, each temperature detecting element outputting a signal having a correlation with the temperature of the temperature detection object by being supplied power by a common power source; and a temperature detector that detects the temperatures of the temperature detection objects based on the signals having correlation with the temperatures of the temperature detection objects outputted from the temperature detecting elements. The temperature detector detects an average temperature of at least two temperature detection objects among the plurality of temperature detection objects or respective temperatures of the plurality of temperature detection objects based on the output signals.