摘要:
A cutter assembly including a rotatable cutting element, a rotary drill bit that may employ such a cutter assembly, and a method of fabricating a cutter assembly are disclosed. In one embodiment of the present invention, a cutter assembly comprises a housing including a recess. A cutting element may be received by and rotatable within the recess of the housing. The cutting element includes a substrate and a superabrasive table that is attached to the substrate. At least one of the substrate and the superabrasive table includes surface features configured to promote rotation of the cutting element within the housing during cutting.
摘要:
A cutting element assembly for use on a rotary drill bit for forming a borehole in a subterranean formation. A cutting element assembly includes a cutting element having a substrate. The cutting element assembly additionally includes a superabrasive material bonded to the substrate. The substrate extends from an end surface to a back surface. A base member is also coupled to the back surface of the substrate. Additionally, a recess is defined in the base member and a structural element is coupled to the base member. The cutting element assembly also includes a biasing element configured to selectively bias the structural element.
摘要:
Embodiments of the present invention relate to diamond-silicon carbide composites, superabrasive compacts including such diamond-silicon carbide composites, and methods of fabricating such diamond-silicon carbide composites and superabrasive compacts. In one embodiment, a superabrasive compact includes a substrate and a superabrasive table bonded to the substrate. The superabrasive table comprises diamond-silicon carbide composite including a matrix comprising nanometer-sized silicon carbide grains and micrometer-sized diamond grains dispersed through the matrix. In another embodiment, a method of fabricating a superabrasive compact is disclosed. An assembly comprising a mixture including diamond particles and silicon is formed. The silicon comprises amorphous silicon, crystalline silicon crystallized from amorphous silicon formed by a milling process, or combinations thereof. A substrate is positioned in proximity to the mixture. The assembly is subjected to heat and pressure to form a superabrasive compact comprising a superabrasive table bonded to the substrate. The superabrasive table comprises diamond-silicon carbide composite including diamond grains dispersed through a matrix of silicon carbide grains.
摘要:
Drill bit cutters and drill bits equipped with the cutters. The cutter is mounted on a bit to present the formation with a radiused, curving, side wall cutting face that is concave in one dimension and convex in another dimension. In a preferred form, the cutting face is in the form of a portion of a surface of revolution generated by an arc segment that is concave relative to the axis of revolution. The cutting face is formed on a layer of polycrystalline diamond disposed on a substrate of tungsten carbide. In another side wall cutter arrangement, a standard cylindrical cutter with a diamond cap is mounted to present the curved cylindrical side of the cap to the formation. Curved side wall cutting faces cut more efficiently than the usual flat end face of conventionally mounted cutters. A major portion of the diamond volume in a side mounted cutter trails the point of cutting face engagement with the formation to provide impact resistance and an increased diamond wear area. The radiused face cutter may be mounted in any orientation on the bit. When mounted conventionally, such that the axis of the cutter is inclined away from the bit and into the direction of bit rotation, the cutter end surface rather than the side wall cuts the formation. In this orientation, the rake of the cutter may be increased to place a second cutting surface into engagement with the formation to provide two cutting surfaces.
摘要:
Embodiments of the invention relate to polycrystalline diamond compacts (“PDCs”) comprising a polycrystalline diamond (“PCD”) table including a thermally-stable region having at least one low-carbon-solubility material disposed interstitially between bonded diamond grains thereof, and methods of fabricating such PDCs. In an embodiment, a PDC includes a substrate, and a PCD table bonded to the substrate. The PCD table includes a plurality of diamond grains exhibiting diamond-to-diamond bonding therebetween and defining a plurality of interstitial regions. The PCD table further includes at least one low-carbon-solubility material disposed in at least a portion of the plurality of interstitial regions. The at least one low-carbon-solubility material exhibits a melting temperature of about 1300° C. or less and a bulk modulus at 20° C. of less than about 150 GPa.
摘要:
Embodiments of the invention relate to methods of fabricating a polycrystalline diamond compacts and applications for such polycrystalline diamond compacts. In an embodiment, a method of fabricating a polycrystalline diamond body includes mechanically milling non-diamond carbon and a sintering aid material for a time and aggressiveness sufficient to form a plurality of carbon-saturated sintering aid particles and sintering a plurality of diamond particles in the presence of the plurality of carbon-saturated sintering aid particles to form the polycrystalline diamond body.
摘要:
Embodiments of the present invention relate to superabrasive materials, superabrasive compacts employing such superabrasive materials, and methods of fabricating such superabrasive materials and compacts. In one embodiment, a superabrasive material includes a matrix comprising a plurality of coarse-sized superabrasive grains, with the coarse-sized superabrasive grains exhibiting a coarse-sized average grain size. The superabrasive material further includes a plurality of superabrasive regions dispersed within the matrix, with each superabrasive region including a plurality of fine-sized superabrasive grains exhibiting a fine-sized average grain size less than the coarse-sized average grain size. In another embodiment, the superabrasive materials may be employed in a superabrasive compact. The superabrasive compact comprises a substrate including a superabrasive table comprising any of the disclosed superabrasive materials. Further embodiments are directed to applications utilizing the disclosed superabrasive articles in applications, such as rotary drill bits.
摘要:
Embodiments of the invention relate to thermally-stable polycrystalline diamond (“PCD”) elements, polycrystalline diamond compacts (“PDCs”), and methods of fabricating such PCD elements and PDCs. In an embodiment, a PDC includes a PCD body including bonded diamond grains defining a plurality of interstitial regions. The PCD body includes a first volume having a first portion of the interstitial regions and a second volume having a second portion of the interstitial regions. The second volume is bonded to the substrate. At least one interstitial material is disposed in the first portion of the interstitial regions and a metallic infiltrant is disposed in the second portion of the interstitial regions. The at least one interstitial material exhibits a negative coefficient of thermal expansion.
摘要:
According to various aspects of the present invention, a superabrasive element includes a plurality of superabrasive grains (e.g., as diamond grains and/or cubic boron nitride grains). The superabrasive element further includes a binder constituent that bonds at least a portion of the superabrasive grains together. The binder constituent includes predominantly one or more inorganic-compound phases, such as boron or silicon compounds. Applications utilizing such superabrasive elements and methods of fabricating such superabrasive elements are also disclosed.
摘要:
Embodiments of the invention relate to non-cylindrical polycrystalline diamond compacts (“PDCs”), and methods of fabricating such non-cylindrical PDCs without substantially undercutting a cemented carbide substrate thereof from an overlying polycrystalline diamond (“PCD”) table thereof. According to various embodiments, a PDC includes a PCD table including an upper surface and a table non-cylindrical lateral periphery. The PDC includes a cemented carbide substrate bonded to the PCD table. In an embodiment, the cemented carbide substrate includes a substrate non-cylindrical lateral periphery that is not substantially undercut from the table non-cylindrical lateral periphery of the PCD table. In an embodiment, the PDC includes at least one alignment feature positioned on the cemented carbide substrate and/or the PCD table.