摘要:
A fuel injection pump is described wherein a plunger is rotatingly and reciprocally movable in an enclosure to define a compression chamber which is connected to a fuel inlet during an intake stroke of the plunger and to a fuel outlet during a compression stroke thereby to initiate injection of fuel to the outlet. A solenoid valve is responsive to a voltage applied from a voltage source for providing a pressure relief action on the fuel in the compression chamber. A control unit is responsive to the onset of fuel injection to determine a basic timing at which fuel is to be terminated and corrects the basic timing as a function of the source voltage to compensate for a voltage variation thereof which would otherwise affect on the operation of the solenoid valve. The solenoid valve is then energized at the corrected timing.
摘要:
A fuel injection control device is disclosed that includes a fuel injection valve for performing a fuel injection event at an assumed fuel quantity. The device also includes a rotation detecting device for detecting a change in rotation amount of the output shaft. The device further includes a slip rate detection device for detecting a slip rate between the output shaft and the driven shaft. Also included is an actual fuel injection amount estimating device for estimating an actual fuel injection quantity during the fuel injection event based on the detected change in rotation and the detected slip rate. The device also includes a learning device for learning a deviation based on the difference between the estimated actual fuel injection quantity and the assumed fuel injection quantity. A related method is also disclosed.
摘要:
A fuel injection control apparatus for an internal combustion engine is provided. A controller directs a fuel injector to spray a learning injection quantity of fuel and determines a resulting increase in speed of the engine. The controller determines the quantity of the fuel actually sprayed from the fuel injector based on the increase in speed of the engine and calculates a correction factor which compensates for a difference between the learning injection quantity and the actual injection quantity. The controller also determines a variation in load acting on a driving member of a torque transmission mechanism. When such a variation is great undesirably, the controller stops spraying the learning injection quantity. The controller may determine the increase in speed of the engine based on the degree of the variation in load. This ensures the accuracy in calculating the correction factor regardless of the variation in load.
摘要:
A fuel injection controller calculates a difference between a rotation speed fluctuation amount of an engine in the case where an injection for learning is performed and the rotation speed fluctuation amount in the case where the injection for the learning is not performed as a rotation speed increase amount. The controller calculates an actual injection amount actually injected from an injector based on a rotation state of the engine. The controller calculates a difference between the actual injection amount and a command injection amount outputted to the injector as a characteristic deviation and corrects the command injection amount to reduce the characteristic deviation. The controller prohibits the correction of the command injection amount when a variation in the rotation speed increase amount is equal to or greater than a specified value.
摘要:
A valve control device corrects a change rate of an opening degree of a valve in accordance with engine rotation speed when deposit elimination operation is performed. The valve control device corrects an inclination between a positive maximum opening degree and a negative maximum opening degree of the valve in accordance with the engine rotation speed when the deposit elimination operation is performed. Thus, when the engine rotation speed is low and a noise accompanying the deposit elimination operation becomes more audible, the change rate of the opening degree of the valve is reduced. As a result, the noise accompanying the deposit elimination operation is reduced and annoyance for vehicle occupants is reduced.
摘要:
If a user presses a clutch pedal to perform gear-shifting operation while a vehicle is traveling, a clutch disc, which has been engaged with a flywheel rotating with an engine, is brought to partial clutch engagement and slides on an end surface of the flywheel to generate friction. Thus, a first phenomenon in which a decreasing rate of the engine rotation speed rapidly increases occurs. Then, a second phenomenon in which the clutch disc is completely disengaged from the flywheel to eliminate the friction and the decreasing rate of the engine rotation speed returns to an original state occurs. If the first and second phenomena are detected successively when neither an engine side nor a power transmission system side transmits power for varying an engine rotation speed, it is determined that the clutch disc is disengaged.
摘要:
An electronic control unit (ECU) of an injection control system of an internal combustion engine measures an engine rotation speed in a period from a time point when an exhaust valve opens to a time point when a top dead center of a next cylinder is detected after a single injection is performed. The ECU calculates a rotation speed fluctuation caused by the single injection based on the engine rotation speed. The engine rotation speed provided immediately after the single injection is measured after a cylinder pressure increased by the single injection decreases to substantially the same level as the cylinder pressure provided in the case where the single injection is not performed. Therefore, the rotation speed fluctuation corresponding to torque generated by the single injection can be measured accurately.
摘要:
A fuel injection control device of a diesel engine performs a learning injection during a no-injection period, in which a command injection quantity is zero or under. A difference between a variation in the engine rotation speed in the case where the learning injection is performed and a variation in the engine rotation speed in the case where the learning injection is not performed is calculated as a rotation speed increase. A torque proportional quantity is calculated by multiplying the rotation speed increase by the engine rotation speed at the time when the learning injection is performed. An injection correction value is calculated from a deviation between the actual injection quantity, which is estimated from the torque proportional quantity, and the command injection quantity. The command injection quantity is corrected based on the injection correction value.
摘要:
An electronic control unit (ECU) of an injection control system of an internal combustion engine measures an engine rotation speed in a period from a time point when an exhaust valve opens to a time point when a top dead center of a next cylinder is detected after a single injection is performed. The ECU calculates a rotation speed fluctuation caused by the single injection based on the engine rotation speed. The engine rotation speed provided immediately after the single injection is measured after a cylinder pressure increased by the single injection decreases to substantially the same level as the cylinder pressure provided in the case where the single injection is not performed. Therefore, the rotation speed fluctuation corresponding to torque generated by the single injection can be measured accurately.
摘要:
An engine control unit (ECU) of an internal combustion engine performs energy changing control for changing a charging amount (an upper limit value of charging voltage, charging speed or target energy) to a piezo stack of a piezo injector in accordance with common rail pressure. During the energy changing control, the ECU contracts a command injection period as the target energy charged to the piezo stack increases so that actual injection end timing or valve closing timing of a nozzle portion is unchanged even if the target energy is changed. Meanwhile, the ECU delays command injection timing as the target energy increases so that actual injection start timing or valve opening timing of the nozzle portion is unchanged even if the target energy is changed.