Abstract:
Systems and methods are provided for co-processing of pyrolysis tar with pre-pyrolysis flash bottoms. In some aspects, the co-processing can correspond to solvent-assisted hydroprocessing. By combining pyrolysis tar and flash bottoms with a solvent, various difficulties associated with hydroprocessing of the fractions can be reduced or minimized, such as difficulties associated with hydroprocessing of high viscosity feeds and/or high sulfur feeds. Optionally, separate solvents and/or fluxes can be used for the pyrolysis tar and the flash bottoms. The resulting upgraded products can be suitable, for example, for inclusion in low sulfur fuel oils (LSFO).
Abstract:
Processes for preparing a low particulate liquid hydrocarbon product are provided and includes blending a tar stream containing particles with a fluid to produce a fluid-feed mixture containing tar, the particles, and the fluid, where the fluid-feed mixture contains about 30 wt % or greater of the fluid based on a combined weight of the tar stream and the fluid. The method also includes separating, e.g., by centrifuging, from the fluid-feed mixture a higher density portion and a lower density portion, where the lower density portion contains no more than 25 wt % of the particles in the fluid-feed mixture, based on the weight of the particles in the fluid-feed mixture.
Abstract:
The present disclosure provides methods for hydroprocessing of heavy oils, such as pyrolysis tars. For example, a process for preparing a liquid hydrocarbon product includes providing a first process stream comprising a reduced reactivity tar, and blending the first process stream with a utility fluid to produce a second process stream comprising solids and a reduced reactivity, lower viscosity tar. The method can includes introducing the second process stream into a guard reactor without sulfiding the guard reactor catalyst(s) prior to introducing the second process stream into the guard reactor. The method includes hydroprocessing the second process stream in the guard reactor under mild hydroprocessing conditions to produce a third process stream. The method includes hydroprocessing the third process stream to produce a fourth process stream having a bromine number (BN) lower than 12 and comprising the liquid hydrocarbon product and the utility fluid.
Abstract:
This invention relates to thermally-treating and hydroprocessing pyrolysis tar to produce a hydroprocessed pyrolysis tar, but without excessive foulant accumulation during the hydroprocessing. The invention also relates to upgrading the hydroprocessed tar by additional hydroprocessing; to products of such processing; to blends comprising one or more of such products; and to the use of such products and blends, e.g., as lubricants, fuels, and/or constituents thereof.
Abstract:
A hydrocarbon conversion process comprises providing a hydrocarbon feedstock comprising an effluent fraction from a pyrolysis process, wherein the effluent fraction has an initial boiling point at atmospheric pressure of at least 177° C. and a final boiling point at atmospheric pressure of no more than 343° C. and comprises at least 0.5 wt. % of olefinic hydrogen atoms based on the total weight of hydrogen atoms in the effluent fraction. The hydrocarbon feedstock is hydroprocessed in at least one hydroprocessing zone in the presence of treatment gas comprising molecular hydrogen under catalytic hydroprocessing conditions to produce a hydroprocessed product comprising less than 0.5 wt. % of olefinic hydrogen atoms based on the total weight of hydrogen atoms in the hydroprocessed product. The hydroprocessing conditions comprise a temperature from 150 to 350° C. and a pressure from 500 to 1500 psig (3550 to 10445 kPa-a).
Abstract:
A multi-stage process is described for upgrading pyrolysis tar, such as steam cracker tar, by hydroprocessing in at least two stages. Hydroprocessing in a first stage is performed in the presence of a utility fluid. The utility fluid has a boiling point distribution from about 120° C. to about 480° C. and is separated from the first stage product.
Abstract:
The invention relates to long chain alcohol, to processes for catalytically producing long chain alcohol from carbon monoxide and molecular hydrogen, to equipment useful in such processes, and to the use of long chain alcohol, e.g., for producing fuel, lubricating oil, detergent, and plasticizer. The catalyst is mesoporous and comprises iron and copper.
Abstract:
The invention relates to templated active material, including those deriving order from organic and/or inorganic templating agents. The invention also relates to methods for producing templated active material, and to active material produced by such methods, and the use of such templated active material for producing oxygenate.
Abstract:
This invention relates to a dimethylterephthalate production process comprising reacting substituted furan with ethylene under cycloaddition reaction conditions and in the presence of a cycloaddition catalyst to produce a bicyclic ether, dehydrating the bicyclic ether to produce a substituted phenyl, dissolving said substituted phenyl in methanol, and oxidizing and esterifying the substituted phenyl in the presence of an oxidative esterification catalyst to form dimethylterephthalate. Importantly, the process does not include oxidizing the substituted phenyl to form terephthalic acid.
Abstract:
Semicrystalline polyethylene-2,2′-bifuran-5,5′-dicarboxylate (PEBF) homopolyester or copolyester with up to 5 mole percent isophthalate or up to 2.7 mole percent terephthalate, based on the diacid component, or up to 2.5 mole percent 1,4-cyclohexanedimethanol (CHDM), based on the diol component, prepared by esterifying or transesterifying the diacid and the diol components with a catalyst including about 10 to about 50 ppm wt metal, and polycondensation, wherein the bifuran polyester has an intrinsic viscosity of at least 0.4 g/dL and a semicrystalline melting peak (Tm) with ΔHf equal to or greater than 5 J/g on the second heating ramp.