Abstract:
A memory stores a probability map including information indicative of probabilities of a vehicle being used during each of a plurality of segments of a time period. A processor of the vehicle is programmed to schedule a time to install a software update utilizing the probability map and an expected downtime required for the installation, and to install the software update at the scheduled time responsive to confirming the vehicle is not in use.
Abstract:
A system includes a processor configured to route a telematics message to all networks not pre-identified as backbone networks in response to a directionality bit, included in a CAN identifier, indicating non-backbone routing. The processor is also configured to route the telematics message to any pre-identified backbone networks in response to the directionality bit indicating backbone routing.
Abstract:
An engine of a stop/start vehicle, after the engine has been automatically stopped, may be commanded to automatically restart in response to detecting that the vehicle is in a turn lane based on traffic data in a vicinity of the vehicle such that the engine is automatically restarted before a brake pedal is released and a steering wheel is turned.
Abstract:
A vehicle may include: at least one power source; a plurality of wheels; a motor configured to drive at least one of the plurality of wheels with energy stored in the power source; and at least one processor configured to: break a received route into a plurality of segments; and calculate a route energy consumption rate correction factor (RECF) of a current segment as a function of the following received values: a RECF of a previous segment, an observed energy consumption rate, and an estimated energy consumption rate.
Abstract:
A method of controlling a battery electric vehicle includes displaying an energy consumption parameter to a vehicle operator. The energy consumption parameter is based on a filtered energy usage rate. The filtered energy usage rate is defined by a weighted incremental energy consumption rate measured over a first distance and an average energy consumption rate learned over a second distance. The second distance exceeds the first distance.
Abstract:
A vehicle is provided which may include an energy conversion device, an energy source to supply power to the energy conversion device, and at least one controller in communication with an interface. The controller may be programmed to output a distance to empty (DTE) to the interface based on conditions of vehicle components and the energy source compensated by a distance correction factor. The controller may further include a DTE prediction architecture including a feed-forward energy consumption estimator, an energy consumption learning filter, a distance compensator, and a DTE calculator. A method for estimating distance to empty for a vehicle is also provided which may output a DTE modified by a predicted DTE range loss selected to include a distance correction factor corresponding to and correcting for the noise factor.
Abstract:
An example method of controlling an electric vehicle includes altering operation of an electric vehicle in response to a predicted energy consumption rate. The method includes adjusting the predicted energy consumption in response to variations in past energy consumption rates.
Abstract:
Methods and systems are provided for displaying a recommended engine fuel fill amount to an operator of a plug-in hybrid electric vehicle. In one example, the recommended engine fuel fill amount is determined based on an actual amount of fuel consumed over a particular duration and displayed to an operator of the vehicle with a low fuel warning.
Abstract:
A stop/start system of a micro-hybrid vehicle may selectively initiate an engine auto start in response to a PRNDL gear lever/transmission being moved/shifted out of DRIVE after an engine auto stop and a determination that the vehicle is located, for example, in an intersection or railroad crossing prior to the PRNDL gear lever/transmission being moved/shifted into REVERSE.
Abstract:
Methods and systems are provided for displaying a recommended engine fuel fill amount to an operator of a plug-in hybrid electric vehicle. In one example, the recommended engine fuel fill amount is determined based on an actual amount of fuel consumed over a particular duration and displayed to an operator of the vehicle with a low fuel warning.