Abstract:
An extreme ultraviolet light source apparatus for supplying extreme ultraviolet light to a processing unit for performing processing by using the extreme ultraviolet light. The extreme ultraviolet light source apparatus includes: a chamber in which the extreme ultraviolet light to be supplied to the processing unit is generated; a collector mirror for collecting the extreme ultraviolet light generated in the chamber to output the extreme ultraviolet light to the processing unit; and an optical path connection module for defining a route of the extreme ultraviolet light between the chamber and the processing unit and isolating the route of the extreme ultraviolet light from outside.
Abstract:
In an extreme ultraviolet light generation apparatus, a target detection section may include a light source, a transfer optical system, an image sensor configured to output image data of an image that has been formed by irradiating a target outputted from a target supply device with light outputted from the light source on a light-receiving unit of the image sensor by the transfer optical system, and a processing unit, connected to the image sensor, configured to receive the image data, obtain a first optical intensity distribution along a first line that intersects with a trajectory of the target and a second optical intensity distribution along a second line that intersects with the trajectory, calculate a center of gravity position in the first optical intensity distribution and a center of gravity position in the second optical intensity distribution, and calculate an actual path of the target based on the calculated positions.
Abstract:
An extreme ultraviolet light source apparatus, which is to generate an extreme ultraviolet light by irradiating a target with a main pulse laser light after irradiating the target with a prepulse laser light, the extreme ultraviolet light source apparatus comprises: a prepulse laser light source generating a pre-plasma by irradiating the target with the prepulse laser light while a part of the target remains, the pre-plasma being generated at a different region from a target region, the different region being located on an incident side of the prepulse laser light; and a main pulse laser light source generating the extreme ultraviolet light by irradiating the pre-plasma with the main pulse laser light.
Abstract:
A target supply device includes a nozzle portion, a cover, a first electrode, and a potential controller. The nozzle portion has a through-hole defined therein to allow a target material to be discharged therethrough. The cover includes an electrically conductive material and is disposed to cover the nozzle portion. The cover has a through-hole defined therein to allow the target material to pass therethrough. The first electrode is disposed on the cover. The first electrode has a through-hole to allow the target material to pass therethrough. The potential controller is configured to control the first electrode to have a first potential that is lower than a second potential of the cover.
Abstract:
A laser apparatus includes an oscillator that outputs laser light, an amplifier, a front optical system and a rear optical system that are disposed at positions where the front and rear optical systems face each other with a chamber sandwiched therebetween and constitute a ring resonator having a first optical path and a second optical path, and first plane parallel substrates disposed on the first optical path or the second optical path. The first optical path is an optical path along which the front optical system outputs the laser light. The second optical path is an optical path along which the rear optical system outputs the laser light. The first plane parallel substrates translate the first optical path and the second optical path, respectively, in the directions in which the first and second optical paths approach each other on the side facing the chamber.
Abstract:
A laser processing apparatus according to the present disclosure includes a placement base on which a processing receiving object is placed, an optical system that guides laser light to the processing receiving object, a gas supply port via which a gas is supplied to a laser light irradiated region of the processing receiving object, a gas recovery port via which the supplied gas is recovered, a mover that moves the irradiated region, and a controller that controls, in accordance with the moving direction of the irradiated region, the direction of the flow of the gas flowing from the gas supply port to the gas recovery port, and the controller changes the direction of the gas flow in response to a change in the moving direction of the irradiated region in such a way that the gas flows in the direction opposite the moving direction of the irradiated region.
Abstract:
A laser system according to one aspect of the present disclosure includes a wavelength-variable first solid-state laser device configured to output a first pulse laser beam; a wavelength conversion system including a first nonlinear crystal configured to wavelength-convert the first pulse laser beam and a first rotation stage configured to change a first incident angle of the first pulse laser beam on the first nonlinear crystal; an excimer amplifier configured to amplify a pulse laser beam wavelength-converted by the wavelength conversion system; and a control unit configured to receive, from an external device, data of a target center wavelength of an excimer laser beam output from the excimer amplifier, control a wavelength of the first pulse laser beam in accordance with the instructed target center wavelength, and control the first incident angle on the first nonlinear crystal in accordance with an average value of the target center wavelength.
Abstract:
A laser system according to one aspect of the present disclosure includes a first solid-state laser device, a wavelength conversion system, an excimer amplifier, and a control unit. The first solid-state laser device includes a first multiple semiconductor laser system, a first semiconductor optical amplifier, and a first fiber amplifier. The first multiple semiconductor laser system includes a plurality of first semiconductor lasers configured to perform continuous wave oscillation in a single longitudinal mode with different wavelengths, a first spectrum monitor, and a first beam combiner. The control unit controls an oscillation wavelength and light intensity of each line of a first multiline spectrum generated by the first semiconductor lasers to obtain an excimer laser beam having at least a target center wavelength or a target spectral line width instructed by an external device.
Abstract:
A laser processing apparatus according to the present disclosure includes a placement base on which a processing receiving object is placed, an optical system that guides laser light to the processing receiving object, a gas supply port via which a gas is supplied to a laser light irradiated region of the processing receiving object, a gas recovery port via which the supplied gas is recovered, a mover that moves the irradiated region, and a controller that controls, in accordance with the moving direction of the irradiated region, the direction of the flow of the gas flowing from the gas supply port to the gas recovery port, and the controller changes the direction of the gas flow in response to a change in the moving direction of the irradiated region in such a way that the gas flows in the direction opposite the moving direction of the irradiated region.
Abstract:
A laser irradiation method of irradiating, with a pulse laser beam, an irradiation object in which an impurity source film is formed on a semiconductor substrate includes: reading fluence per pulse of the pulse laser beam with which a rectangular irradiation region set on the irradiation object is irradiated and the number of irradiation pulses the irradiation region is irradiated, the fluence being equal to or larger than a threshold at or beyond which ablation potentially occurs to the impurity source film when the irradiation object is irradiated with pulses of the pulse laser beam in the irradiation pulse number and smaller than a threshold at or beyond which damage potentially occurs to the surface of the semiconductor substrate; calculating a scanning speed Vdx; and moving the irradiation object at the scanning speed Vdx relative to the irradiation region while irradiating the irradiation region with the pulse laser beam at the repetition frequency f.