Abstract:
Systems and methods relating to communication within a fabric network are presented. The fabric network includes one or more logical networks that enables devices connected to the fabric to communicate with each other using various profiles known to the devices. A device sending a message may follow a general message format to encode the message so that other devices in the fabric may understand the message regardless of which logical networks the devices are connected to. Within the message format, a payload of data may be included for the receiving device to forward, store, or process the message. The format and the contents of the payload may vary according to a header within the payload that indicates a profile and a message type within the profile. Using the profile and message type, the receiving devices may decode the message to process the message.
Abstract:
A method for updating a storage element may include receiving a first set of data from a first device that operating in a structure. The first set of data corresponds to a first data type interpretable by the first device. The method may also include translating the first set of data into a second set of data of a second data type interpretable by a second device operating in the structure but not by the first device. The first set of data and the second set of data are associated with a first portion of information associated with occupancy properties of the structure. The method may then include storing the second set of data in a storage element that includes a second portion information associated with the occupancy properties of the structure.
Abstract:
Systems and methods are provided for efficient communication through a fabric network of devices in a home environment or similar environment. For example, an electronic device may efficiently control communication to balance power and reliability concerns, may efficiently communicate messages to certain preferred networks by analyzing Internet Protocol version 6 (IPv6) packet headers that use an Extended Unique Local Address (EULA), may efficiently communicate software updates and status reports throughout a fabric network, and/or may easily and efficiently join a fabric network.
Abstract:
Systems and methods are provided for efficient communication through a fabric network of devices in a home environment or similar environment. For example, an electronic device may efficiently control communication to balance power and reliability concerns, may efficiently communicate messages to certain preferred networks by analyzing Internet Protocol version 6 (IPv6) packet headers that use an Extended Unique Local Address (EULA), may efficiently communicate software updates and status reports throughout a fabric network, and/or may easily and efficiently join a fabric network.
Abstract:
Systems and methods relating to communication within a fabric network are presented. The fabric network includes one or more logical networks that enables devices connected to the fabric to communicate with each other using various profiles known to the devices. A device sending a message may follow a general message format to encode the message so that other devices in the fabric may understand the message regardless of which logical networks the devices are connected to. Within the message format, a payload of data may be included for the receiving device to forward, store, or process the message. The format and the contents of the payload may vary according to a header within the payload that indicates a profile and a message type within the profile. Using the profile and message type, the receiving devices may decode the message to process the message.
Abstract:
Systems and methods relating to communication within a fabric network are presented. The fabric network includes one or more logical networks that enables devices connected to the fabric to communicate with each other using various profiles known to the devices. A device sending a message may follow a general message format to encode the message so that other devices in the fabric may understand the message regardless of which logical networks the devices are connected to. Within the message format, a payload of data may be included for the receiving device to forward, store, or process the message. The format and the contents of the payload may vary according to a header within the payload that indicates a profile and a message type within the profile. Using the profile and message type, the receiving devices may decode the message to process the message.