Abstract:
Hazard detection systems and methods according to embodiments described herein are operative to enable a user to interface with the hazard detection system by performing a touchless gesture. The touchless gesture can be performed in a vicinity of the hazard detection system without requiring physical access to the hazard detection system. This enables the user to interact with the hazard detection system even if it is out of reach. The hazard detection system can detect gestures and perform an appropriate action responsive to the detected gesture. In one embodiment, the hazard detection system can silence its audible alarm or pre-emptively turn off its audible alarm in response to a detected gesture. Gestures can be detected by processing sensor data to determine whether periodic shapes are detected.
Abstract:
A camera system includes memory, a lens assembly to direct light from a scene onto an image sensing element, an image sensing element configured to receive light from the scene via the lens assembly, at least one infrared illuminator configured to transmit infrared light, and a processor, coupled to the image sensing element and the at least one infrared illuminator. The processor is configured to operate the illuminators and the image sensing element in a first mode whereby infrared light transmitted by the illuminators and reflected from the scene is used to generate a two-dimensional image of the scene. The processor is also configured to operate the illuminators and the image sensing element in a second mode whereby infrared light transmitted by the illuminators and reflected from the scene is used to identify a planar surface in the scene.
Abstract:
Systems and methods of a security system are provided, including detecting, by a sensor, a sound event, and selecting, by a processor coupled to the sensor, at least a portion of sound data captured by the sensor that corresponds to at least one sound feature of the detected sound event. The systems and methods include classifying the at least one sound feature into one or more sound categories, and determining, by a processor, based upon a database of home-specific sound data, whether the at least one sound feature is a human-generated sound. A notification can be transmitted to a computing device according to the sound event.
Abstract:
A system and method for the use of sensors and processors of existing, distributed systems, operating individually or in cooperation with other systems, networks or cloud-based services to enhance the detection and classification of sound events in an environment (e.g., a home), while having low computational complexity. The system and method provides functions where the most relevant features that help in discriminating sounds are extracted from an audio signal and then classified depending on whether the extracted features correspond to a sound event that should result in a communication to a user. Threshold values and other variables can be determined by training on audio signals of known sounds in defined environments, and implemented to distinguish human and pet sounds from other sounds, and compensate for variations in the magnitude of the audio signal, different sizes and reverberation characteristics of the environment, and variations in microphone responses.
Abstract:
A method for adaptively adjusting a threshold used to detect the presence of a living being may include receiving a first set of sensor measurements acquired by a passive infrared (PIR) sensor during a time period when the living being is not expected to be present in a space monitored by the PIR sensor. Here, the sensor measurements may depend on one or more noise sensitivity characteristics of the PIR sensor. The method may include adjusting a threshold that may indicate a presence of the living being based on the first set of sensor measurements. The method may then receive a second set of sensor measurements acquired by the PIR sensor and detect the presence of the living being when at least one of the second set of sensor measurements exceeds the threshold.
Abstract:
Systems and methods for exchanging a data stream of information that varies over time using a message format. The message format includes a version field that indicates a version of a structure of the message format. The message format also includes one or more resources fields that each identifies a resource to be imported into the data stream exchanging the data stream. Moreover, the message format includes one or more records that represent time-variant data samples being exchanged in the message. Furthermore, the message format includes one or more descriptor fields, wherein each descriptor field corresponds to at least one respective record of the one or more records and contains metadata describing data contained within the at least one record.
Abstract:
A particular smart hazard detector may itself function as a guide during a process of installation of the same at an installation location. Additionally, the installation location of the particular smart hazard detector may play a central role in how various settings of the smart hazard detector are defined and adjusted over time.
Abstract:
Hazard detection systems and methods according to embodiments described herein are operative to enable a user to interface with the hazard detection system by performing a touchless gesture. The touchless gesture can be performed in a vicinity of the hazard detection system without requiring physical access to the hazard detection system. This enables the user to interact with the hazard detection system even if it is out of reach. The hazard detection system can detect gestures and perform an appropriate action responsive to the detected gesture. In one embodiment, the hazard detection system can silence its audible alarm or pre-emptively turn off its audible alarm in response to a detected gesture. Gestures can be detected by processing sensor data to determine whether periodic shapes are detected.