Abstract:
In accordance with an exemplary embodiment, a method for manufacturing a component using additive manufacturing techniques includes providing a 3D design model for the component, adding one or more crack resistant features to the 3D design model of the component to produce an enhanced design model, and manufacturing the component using an additive manufacturing technique in accordance with the enhanced design model. The one or more crack resistant features are provided to reduce or eliminate the incidence of cracking in the manufactured component.
Abstract:
A turbine vane includes an airfoil that extends from an inner diameter to an outer diameter, and from a leading edge to a trailing edge. The turbine vane includes an inner platform coupled to the airfoil at the inner diameter. The turbine vane includes a cooling system defined in the airfoil including a first conduit in proximity to the leading edge to cool the leading edge and a second conduit to cool the trailing edge. The first conduit has an inlet at the outer diameter to receive a cooling fluid and an outlet portion that is defined at least partially through the inner platform. The first conduit includes a plurality of cooling features that extend between a first surface and a second surface of the first conduit, and the first surface of the first conduit is opposite the leading edge.
Abstract:
A turbine vane includes an airfoil that extends from an inner diameter to an outer diameter, and from a leading edge to a trailing edge. The turbine vane includes an inner platform coupled to the airfoil at the inner diameter. The turbine vane includes a cooling system defined in the airfoil including a first conduit in proximity to the leading edge to cool the leading edge and a second conduit to cool the trailing edge. The first conduit has an inlet at the outer diameter to receive a cooling fluid and an outlet portion that is defined at least partially through the inner platform. The first conduit includes a plurality of cooling features that extend between a first surface and a second surface of the first conduit, and the first surface of the first conduit is opposite the leading edge.
Abstract:
A turbine blade includes an airfoil that has a tip region that extends from the leading edge toward the trailing edge, and the tip region is bounded by a wall that extends at an angle. The leading edge has a leading edge cooling circuit that is defined from the platform to a tip flag channel, and the leading edge cooling circuit is in fluid communication with the tip flag channel. The pressure side includes at least one tip dust hole defined through the wall proximate the pressure side, and the at least one tip dust hole has an inlet and an outlet. The airfoil has at least one rib defined on the wall that extends at a second angle to direct the particles and a portion of the cooling fluid into the inlet.
Abstract:
An airfoil for a gas turbine engine includes a first side wall; a second side wall joined to the first side wall at a leading edge and a trailing edge; and an internal cooling system arranged within the first and second side walls configured to direct cooling air through and out of the airfoil. The internal cooling system has a first cooling circuit that includes an acceleration channel generally extending in a radial outward direction. A first section of the acceleration channel decreases in cross-sectional area along the radial outward direction such that the cooling air is accelerated through the first section of the acceleration channel. The first cooling circuit further includes a trailing edge chamber fluidly coupled to receive at least a portion of the cooling air from the acceleration channel and extending generally in a chordwise aft direction from the acceleration channel to the trailing edge.
Abstract:
A heat exchanger includes a plurality of interconnected separator members that respectively include a first surface and an opposite second surface. The separator members respectively include an array of wave features. Also, the separator members are stacked and disposed in an alternating arrangement with the first surfaces of adjacent separator members facing each other and attached at the respective wave features, and with the second surfaces of adjacent separator members facing each other and attached at the respective wave features. The heat exchanger also includes a plurality of first flow passages for first fluid flow and second flow passages for second fluid flow. The second fluid and the first fluid are configured to exchange heat through the separator members.
Abstract:
A heat exchanger includes a separator member that divides a first flow passage from a second flow passage. The heat exchanger also includes a plurality of first hollow members that extend across the first flow passage at respective non-orthogonal angles. The plurality of first hollow members are fluidly connected to the second flow passage. Moreover, the heat exchanger includes a plurality of second hollow members that extend across the second flow passage at respective non-orthogonal angles. The plurality of second hollow members are fluidly connected to the first flow passage.
Abstract:
An engine component includes a body having an internal surface and an external surface, the internal surface at least partially defining an internal cooling circuit. The engine component further includes a plurality of cooling holes formed in the body and extending between the internal cooling circuit and the external surface of the body. The plurality of cooling holes includes a first cooling hole with forward diffusion and lateral diffusion.
Abstract:
In accordance with an exemplary embodiment, a turbine rotor blade is provided for a turbine section of an engine. The turbine rotor blade includes a platform and an airfoil extending from the platform into a mainstream gas path of the turbine section. The airfoil includes a first side wall; a second side wall joined to the first side wall at a leading edge and a trailing edge; a tip cap extending between the first side wall and the second side wall; a first parapet wall extending from the first side wall; a first parapet wall cavity formed at least partially within the first parapet wall; and a first cooling hole extending between the first parapet wall cavity and a first surface of the first parapet wall such that cooling air flows through the first parapet wall cavity, through the first cooling hole, and out of the first parapet wall.
Abstract:
Hybrid bonded turbine rotors and methods for manufacturing the same are provided. A method for manufacturing a hybrid bonded turbine rotor comprises the steps of providing turbine disk having a rim portion comprising a live rim of circumferentially continuous material and a plurality of live rim notches in an outer periphery of the turbine disk alternating with a plurality of raised blade attachment surfaces defining the outer periphery; providing a plurality of turbine blades, each of which comprising an airfoil portion and a shank portion, the shank portion having a base surface; metallurgically bonding a compliant alloy material layer to either or both of the raised blade attachments surfaces of the turbine disk and the base surfaces of the blade shanks; and linear friction welding the plurality of blades to the turbine disk so as to form a bond plane between the raised blade attachments surfaces of the turbine disk and the base surfaces of the blade shanks, the compliant alloy material layer being disposed at the bond plane.