摘要:
A semiconductor device includes a first-type internal stress film formed of a silicon oxide film over source/drain regions of an nMISFET and a second-type internal stress film formed of a TEOS film over source/drain regions of a pMISFET. In a channel region of the NMISFET, a tensile stress is generated in the direction of movement of electrons due to the first-type internal stress film, so that the mobility of electrons is increased. In a channel region of the pMISFET, a compressive stress is generated in the direction of movement of holes due to the second-type internal stress film, so that the mobility of holes is increased.
摘要:
It is an object to obtain a semiconductor device having a circuit for CBCM (Charge Based Capacitance Measurement) which can measure a capacitance value with high precision. An MOS transistor constituting a circuit for CBCM has the following structure. More specifically, source-drain regions (4) and (4′) are selectively formed in a surface of a body region (16), and extension regions (5) and (5′) are extended from tip portions of the source-drain regions (4) and (4′) opposed to each other, respectively. A gate insulating film 7 is formed between the source-drain regions (4) and (4′) including the extension regions (5) and (5′) and a gate electrode (8) is formed on the gate insulating film (7). A region corresponding to a pocket region 6 (6′) in a conventional structure having a higher impurity concentration than that of a channel region is not formed in a tip portion of the extension region 5 (5′) and a peripheral portion of the extension region (5).
摘要:
After a gate electrode has been formed over a semiconductor region with a gate insulating film interposed therebetween, an amorphous layer is formed in the semiconductor region by implanting heavy ions with a large mass into the semiconductor region using the gate electrode as a mask. Then, ions of a first dopant are implanted into the semiconductor region using the gate electrode as a mask. Next, a first annealing process is conducted on the semiconductor region at a temperature between 400° C. and 550° C., thereby making the amorphous layer recover into a crystalline layer. Subsequently, a second annealing process is conducted on the semiconductor region, thereby forming an extended high-concentration dopant diffused layer of a first conductivity type and a pocket dopant diffused layer of a second conductivity type. The extended high-concentration dopant diffused layer is formed to have a shallow junction by diffusing the first dopant, while the pocket dopant diffused layer is formed under the extended high-concentration dopant diffused layer by diffusing the heavy ions.
摘要:
A method for producing a semiconductor device includes the steps of: forming an impurity diffusion layer for controlling a threshold voltage by ion implantation; and conducting a high-temperature rapid heat treatment for recovering crystal defects generated by the ion implantation. More specifically, treatment conditions for the high-temperature rapid heat treatment are set in such a manner that interstitial atoms causing the crystal defects are diffused, and impurities in the impurity diffusion layer are not diffused. For example, the high-temperature rapid heat treatment is conducted in a temperature range of about 900° C. to about 1100° C.
摘要:
The semiconductor device of the invention includes: a semiconductor substrate of a first conductivity type; a gate insulating film formed on a selected region on a main surface of the semiconductor substrate; a gate electrode formed on the gate insulating film; and a source region and a drain region which are formed of high-concentration impurity diffusion layers of a second conductivity type in the semiconductor substrate. In the semiconductor device, a thickness of both end portions of the gate insulating film is larger than a thickness of a center portion of the gate insulating film, and each of the source region and the drain region includes a first portion located under both end-portions of the gate insulating film and a second portion having a thickness equal to or larger than a thickness of the first portion. An impurity concentration in the first portion is substantially equal to an impurity concentration in the second portion.