摘要:
A semiconductor device includes a plurality of memory arrays and a plurality of memory array control circuits. Each of the plurality of memory array control circuits includes a read/write control circuit for controlling a read/write operation for the memory array, and a selection circuit for selecting and activating the memory array based on a clock signal and an output signal from the read/write control circuit.
摘要:
There are provided a memory controller, a plurality of memory modules, and an external data bus common to the plurality of memory modules. The plurality of memory modules each include a plurality of memory chips, a plurality of internal data buses connected between a corresponding memory chip and an input/output terminal, a logic chip, and a plurality of switch transistors each connected between a corresponding internal data bus and a corresponding input/output terminal to turn on/off in response to a control signal from the logic chip. The plurality of switch transistors in a memory module selected by the memory controller are turned on, and the plurality of switch transistors in the memory modules other than the selected memory module are turned off. Thus, the capacity of the memory modules may be increased while maintaining high-speed data transfer.
摘要:
A semiconductor memory device is configured to include a static random access memory (SRAM) array and a dynamic random access memory (DRAM) array. The memory device includes an internal data line which enables the transfer of data blocks between the SRAM and DRAM arrays. Data transfer circuitry is provided separately from the internal data line and includes a latch circuit for latching the data to be transferred. The data transfer circuitry is responsive to a transfer designating signal.
摘要:
An output circuit and a synchronous semiconductor memory device according to the invention suppress output of invalid data, and perform data output with exact timings. The synchronous semiconductor memory device includes a plurality of output buffers provided correspondingly to data I/O terminals, a plurality of data transfer latch circuits and a plurality of output control signal latch circuits. Data transfer latch circuit transfers data read from a memory cell to the corresponding output buffer in response to an internal clock signal. The output control signal latch circuit issues an output control signal to the corresponding output buffer in synchronization with the internal clock signal. Thereby, an output timing of each output buffer can be controlled independently of the other output buffer.
摘要:
A semiconductor memory device includes a DRAM, an SRAM and a bi-direction transfer gate circuit provided between SRAM and DRAM. SRAM array includes a plurality of sets of word lines. Each set is provided in each row of SRAM array and each word line in each set is connected to a different group of memory cells of an associated row. An address signal for the SRAM and an address signal for the DRAM are separately applied to an address buffer. The semiconductor memory device further includes an additional function control circuit for realizing a burst mode and a sleep mode. A data transfer path from DRAM to the SRAM and a data transfer path from the SRAM to the DRAM are separately provided in the bi-directional transfer gate circuit. Data writing paths and data reading paths are separately provided in the DRAM array. By the above described structure, operation of the buffer circuit is stopped in the sleep mode, reducing power consumption. Since data writing path and data reading path are separately provided in the DRAM array, addresses to the DRAM array can be applied in non-multiplexed manner, so that data can be transferred at high speed from the DRAM array to the SRAM array, enabling high speed operation even at a cache miss.
摘要:
In a synchronous dynamic random access memory (SDRAM), one bank A is divided into banks A0 and A1, and two sets of writing-related circuits are arranged corresponding to each memory cell array bank and are capable of performing writing operation substantially independently. The first and second bits of write data applied successively from the outside world are applied alternately to write registers. Since the I/O line pair is connected to the selected memory cells in respective memory cell array banks after incorporation of the second bit data to be written is completed, the potential levels of the corresponding I/O line pair always change to the corresponding potential levels from the initial state in writing the first and second bit data.
摘要:
A synchronous semiconductor memory device can achieve either of a pipelined mode and a prefetch mode with one chip. In accordance with CAS (column address strobe) latency 4 instructing signal MCL4 stored in a mode register, a sequence of generation of control signals from a control signal generating circuit is set to either the pipelined mode or the prefetch mode. A mode switching circuit merely switches reset timings of a write buffer in accordance with a CAS latency. Therefore, the internal data write mode can be easily switched in accordance with an operation environment, and the synchronous semiconductor memory device can implement multiple data write modes with one chip.
摘要:
Memory arrays are divided into banks which can be operated independent from each other. Read data storing registers and write data storing registers operating independent from each other are provided for the banks. The memory array is divided into a plurality of small array blocks, local IO lines are arranged corresponding to each array block, and the local IO lines are connected to global IO lines. The global IO lines are connected to preamplifier groups and to write buffer groups. By control signal generating circuits and by a register control circuit, inhibition of writing of a desired bit only during successive writing operation can be done, data can be collectively written to the selected memory cells when the final data is input if the data writing should be stopped before reaching the wrap length in successive writing, and the timing for activating the memory array when the write cycle should be repeatedly carried out can be delayed. A synchronous semiconductor memory device having small chip area, high speed of operation, low power consumption and multiple functions is provided.
摘要:
A semiconductor memory device includes a DRAM, an SRAM and a bi-direction transfer gate circuit provided between SRAM and DRAM. SRAM array includes a plurality of sets of word lines. Each set is provided in each row of SRAM array and each word line in each set is connected to a different group of memory cells of an associated row. An address signal for the SRAM and an address signal for the DRAM are separately applied to an address buffer. The semiconductor memory device further includes an additional function control circuit for realizing a burst mode and a sleep mode. A data transfer path from DRAM to the SRAM and a data transfer path from the SRAM to the DRAM are separately provided in the bi-directional transfer gate circuit. Data writing paths and data reading paths are separately provided in the DRAM array. By the above described structure, operation of the buffer circuit is stopped in the sleep mode, reducing power consumption. Since data writing path and data reading path are separately provided in the DRAM array, addresses to the DRAM array can be applied in non-multiplexed manner, so that data can be transferred at high speed from the DRAM array to the SRAM array, enabling high speed operation even at a cache miss.
摘要:
A semiconductor memory device containing a cache includes a static random access memory (SRAM) as a cache memory, and a dynamic random access memory (DRAM) as a main memory. Collective transfer of data blocks is possible between the DRAM and the SRAM through a bi-directional data transfer gate circuit and through an internal data line. A DRAM row decoder and a DRAM column decoder are provided in the DRAM. A SRAM row decoder and an SRAM column decoder are provided in the SRAM. Addresses of the SRAM and DRAM can be independently applied. The data transfer gate includes a latch circuit for latching data from the SRAM, which serves as a high speed memory, an amplifier circuit and a gate circuit for amplifying data from the DRAM, which serves as a large capacity memory, and for transmitting the amplified data to the SRAM, and a gate circuit, responsive to a DRAM write enable signal for transmitting write data to corresponding memory cells of the DRAM. After the data of the SRAM has been latched by a latch circuit, write data is transmitted from the gate circuit to the DRAM, and the write data is transmitted to the SRAM through the amplifier circuit and the gate circuit.