Abstract:
A package includes a carrier, an electronic component on the carrier, an encapsulant encapsulating at least part of the carrier and the electronic component, and at least one lead extending beyond the encapsulant and having a punched surface, wherein at least part of at least one side flank of the encapsulant has a sawn texture.
Abstract:
A package includes: at least one electronic chip; an encapsulant encapsulating at least part of the at least one electronic chip; a shielding layer on at least part of an external surface of the encapsulant; and a first heat removal body thermally coupled to the at least one electronic chip and configured for removing thermal energy from the at least one electronic chip to a cooling fluid. The encapsulant has a surface portion that extends in a surface region extending laterally directly adjacent to the first heat removal body. The surface portion of the encapsulant delimits part of a cooling cavity configured to guide the cooling fluid. The shielding layer covers the surface portion of the encapsulant. A corresponding electronic device, method of manufacturing the package, method of manufacturing the electronic device, vehicle, and method of using the electronic device are also described.
Abstract:
A power semiconductor package includes first power semiconductor dies attached to a metallization layer of at least one first power electronics carrier and second power semiconductor dies attached to a metallization layer of at least one second power electronics carrier. A first lead frame includes a first structured metal frame electrically connected to a load terminal of each first power semiconductor die, and a second structured metal frame electrically connected to a load terminal of each second power semiconductor die and to the metallization layer of the first power electronics carrier. A second lead frame above the first lead frame includes first and second leads electrically connected to the metallization layer of the second power electronics carrier, a third lead between the first and second leads and electrically connected to the first structured metal frame, and a fourth lead electrically connected to the second structured metal frame.
Abstract:
A semiconductor package includes a semiconductor die, an encapsulant body of electrically insulating material that encapsulates the semiconductor die, a thermal conduction plate comprising an outer surface that is exposed from the encapsulant body, a region of thermal interface material interposed between the thermal conduction plate and the semiconductor die, the region of thermal interface material being a liquid or semi-liquid, and a barrier that is configured to prevent the thermal interface material of the region from flowing laterally across the barrier.
Abstract:
A semiconductor package includes a semiconductor die, an encapsulant body of electrically insulating material that encapsulates the semiconductor die, a thermal conduction plate comprising an outer surface that is exposed from the encapsulant body, a region of thermal interface material interposed between the thermal conduction plate and the semiconductor die, the region of thermal interface material being a liquid or semi-liquid, and a barrier that is configured to prevent the thermal interface material of the region from flowing laterally across the barrier
Abstract:
A package and method of making a package is disclosed. In one example, the package includes an electronic chip having at least one pad, an encapsulant at least partially encapsulating the electronic chip, and an electrically conductive contact element extending from the at least one pad and through the encapsulant so as to be exposed with respect to the encapsulant. The electrically conductive contact element comprises a first contact structure made of a first electrically conductive material on the at least one pad and comprises a second contact structure made of a second electrically conductive material and being exposed with respect to the encapsulant. At least one of the at least one pad has at least a surface portion which comprises or is made of the first electrically conductive material.
Abstract:
An electronic sub-module includes a leadframe, a semiconductor chip disposed on the leadframe and an encapsulation material disposed on the leadframe and on the semiconductor chip. The semiconductor chip has a first contact pad on a first main face of the semiconductor chip. The sub-module also includes a first contact element on a first main face of the electronic sub-module. The first contact element is electrically connected with the first contact pad. A surface area of the first contact element is greater than a surface area of the first contact pad.
Abstract:
An electronic module is provided, which comprises a first carrier; an electronic chip comprising at least one electronic component and arranged on the first carrier; a spacing element comprising a surface arranged on the electronic chip and being in thermal conductive connection with the at least one electronic component; a second carrier arranged on the spacing element; and a mold compound enclosing the electronic chip and the spacing element at least partially; wherein the spacing element comprises a material having a CTE value being matched with at least one other CTE.
Abstract:
A power semiconductor module is provided. The power semiconductor module includes a lower substrate and a first electronic device bonded to a surface of the lower substrate. A lead frame has a first side surface bonded to a surface of the first electronic device by a first adhesive, and a second electronic device bonded to a second side surface of the lead frame by the first adhesive. An upper substrate is bonded to a surface of the second electronic device.
Abstract:
A cooling apparatus includes a plurality of discrete modules and a plastic housing. Each module includes a semiconductor die encapsulated by a mold compound, a plurality of leads electrically connected to the semiconductor die and protruding out of the mold compound and a first cooling plate at least partly uncovered by the mold compound. The plastic housing surrounds the periphery of each module to form a multi-die module. The plastic housing includes a first singular plastic part which receives the modules and a second singular plastic part attached to a periphery of the first plastic part. The second plastic part has cutouts which expose the first cooling plates and a sealing structure containing a sealing material which forms a water-tight seal around the periphery of each module at a side of the modules with the first cooling plates.