Abstract:
A tunnel barrier layer in a superconducting device, such as a Josephson junction, is made from catalytically grown silicon dioxide at a low temperature (
Abstract:
In a “window-junction” formation process for Josephson junction fabrication, a spacer dielectric is formed over the first superconducting electrode layer, then an opening (the “window” is formed to expose the part of the electrode layer to be used for the junction. In an atomic layer deposition (ALD) chamber (or multi-chamber sealed system) equipped with direct or remote plasma capability, the exposed part of the electrode is sputter-etched with Ar, H2, or a combination to remove native oxides, etch residues, and other contaminants. Optionally, an O2 or O3 pre-clean may precede the sputter etch. When the electrode is clean, the tunnel barrier layer is deposited by ALD in-situ without further oxidant exposure.
Abstract:
A dielectric for superconducting electronics (e.g., amorphous silicon, silicon oxide, or silicon nitride) is fabricated with reduced loss tangent by fluorine passivation throughout the bulk of the layer. A fluorinant (gas or plasma) is injected into a process chamber, either continuously or as a series of pulses, while the dielectric is being formed by chemical vapor deposition on a substrate. To further reduce defects, the silicon may be deposited from a silicon precursor that includes multiple co-bonded silicon atoms, such as disilane or trisilane.
Abstract:
Defects in hydrogenated amorphous silicon are reduced by low-energy ion treatments and optional annealing. The treatments leave strongly-bonded hydrogen and other passivants in place, but increase the mobility of loosely-bonded and interstitially trapped hydrogen that would otherwise form unwanted two-level systems (TLS). The mobilized hydrogen atoms may be attracted to unused passivation sites or recombined into H2 gas and diffuse out of the deposited layer. The treatments also increase the density of the material. The optional anneal may partially crystallize the layer, further densify the layer, or both. The reduced number of defects and the increased crystallinity reduce the loss tangent of amorphous silicon dielectrics for superconducting microwave devices.
Abstract:
Methods and apparatus for processing using a plasma source for the treatment of semiconductor surfaces are disclosed. The apparatus includes an outer vacuum chamber enclosing a substrate support, a plasma source (either a direct plasma or a remote plasma), and an optional showerhead. Other gas distribution and gas dispersal hardware may also be used. The plasma source may be used to generate activated species operable to alter the surface of the semiconductor materials. Further, the plasma source may be used to generate activated species operable to enhance the nucleation of deposition precursors on the semiconductor surface.
Abstract:
Provided are field effect transistor (FET) assemblies and methods of forming thereof. An FET assembly may include a dielectric layer formed from tantalum silicon oxide and having the atomic ratio of silicon to tantalum and silicon (Si/(Ta+Si)) of less than 5% to provide a low trap density. The dielectric layer may be disposed over an interface layer, which is disposed over a channel region. The same type of the dielectric layer may be used a common gate dielectric of an nMOSFET (e.g., III-V materials) and a pMOSFET (e.g., germanium). The channel region may include one of indium gallium arsenide, indium phosphate, or germanium. The interface layer may include silicon oxide to provide a higher energy barrier. The dielectric layer may be formed using an atomic layer deposition technique by adsorbing both tantalum and silicon containing precursors on the deposition surface and then oxidizing both precursors in the same operation.