Abstract:
The present invention provides for a two-stage optical isolator with reduced polarization mode dispersion. Each stage has two birefringent polarizers separated by a Faraday rotator. The polarizers in each stage are oriented with respect to each other to operate conventionally as an optical isolator for light in a backward direction. However, the polarizers in each stage are oriented with respect to the polarizers in the other stage so that a polarization mode along one direction, say, the ordinary direction, of light in the first stage travelling toward the second stage is aligned along the opposite, extraordinary, direction in the second stage and vice versa. In this manner the component of any polarization travels the same optical distance through the optical isolator to substantially reduce polarization mode dispersion.
Abstract:
A dual-gate MESFET forms the basic building block for a variety of signal coupling applications for use in adaptive microwave communication systems. By controlled biasing of its electrodes, a dual-gate MESFET may be operated as an active signal combiner/divider device. As such, it is capable of providing controlled signal transfer functions, so that it may be used in a variety of adaptive system applications including controlled switching devices, channelized power dividers, active channel fitters, phase shifters, complex weighting devices, etc.
Abstract:
An EDFA with integrated input and output modules is presented. The integrated input module has a packaged pump laser diode mounted to the metal EDFA package to provide a heat sink for the pump laser diode which sends the pump laser light over a optical fiber section connected to the amplifying erbium-doped optical fiber section. The fiber section is formed from an optical fiber which better matches the transmission modes in the erbium-doped optical fiber section and has an end subsection of the single mode fiber for a larger numerical aperture. Collimating lenses also increase the coupling efficiency of the laser diode to the erbium-doped fiber section. The integrated output module has a photodiode with a tap filter to monitor the output power of the EDFA, an optical isolator to prevent interference in the erbium-doped optical fiber section. With a twin optical isolator, the integrated input and output modules can be arranged in different ways and combinations with the erbium-doped optical fiber section. The resulting EDFAs can be manufactured relatively inexpensively into an very small packages compared to current EDFA packages.
Abstract:
An improved optic attenuator controllably filters an optical signal after the signal has been expanded and collimated. The optical signals are preferably expanded and refocused by a single GRIN lens, the signal passing through a variable filter between the GRIN lens and a reflector, and again between the reflector and the GRIN lens. Both the input and output fibers can be held within a single sleeve in alignment with the GRIN lens. The amount of attenuation can be indicated by a potentiometer.
Abstract:
The present invention provides for a joined optical fiber subassembly having first, second and third sections. The first section has a plurality of separate optical fibers with each optical fiber having a core and cladding. The second section, which adjoins the first section, has the optical fibers joined so that a single cladding encloses the cores of the optical fibers. The third section, which adjoins the second section, has the single cladding enclosing the cores of the optical fibers. With the joined optical fiber subassembly as a constituent element, a subunit which can be used in many fiberoptic devices can be created.
Abstract:
A fiber optic package and methods for varying the tension within a fiber Bragg grating or other fiber-based optical device subjects a fiber (having the fiber Bragg grating written therein) to a controlled strain. The resulting strain in the fiber produces a desired and predetermined change in the grating wavelength.
Abstract:
A polarization-insensitive fiberoptic reflective variable aftenuator and on-off switch is provided. The device has a sleeve holding a pair of optical fibers, a first, second and third birefringent crystals, a collimating GRIN lens, a liquid crystal cell and a mirror element. The first birefringent crystal is fixed over an end facet of one of the optical fiber pair, and the second and third birefringent crystals are fixed over an end facet of the other of the optical fiber pair. The GRIN lens has a first end face proximate the first, second and third birefringent crystals and the liquid crystal cell is located between the mirror element and a second end face of the GRIN lens. Responsive to preselected voltages applied to its electrical terminals, the liquid crystal cell is in a first state or a second state. The end facets of the pair of optical fibers, the first, second and third birefringent crystals, the GRIN lens, the liquid crystal cell, and the mirror element are arranged and oriented with respect to each other so that light from one optical fiber passes through, and back from, the first, second and third birefringent crystals, the GRIN lens, the liquid crystal cell and the mirror element into the other optical fiber when the liquid crystal cell is in the On state, and light from one optical fiber passes through, and back from, the first, second and third birefringent crystals, the GRIN lens, the liquid crystal cell and the mirror element , but not into the other second optical fiber when the liquid crystal cell is in the Off state. Light signal traveling between the first and second optical fibers can be attenuated by voltages intermediate the voltage corresponding to the On and Off states.
Abstract:
A fiber Bragg grating DFB-DBR interactive laser is provided by an optical fiber section which is doped with at least one gain-inducing material. At each end of the section there is a fiber Bragg grating which operates as part of a fiber DBR laser. Between these two gratings there is a third fiber Bragg grating which has a 90.degree. phase shift region. The third fiber Bragg grating effectively operates as part of a fiber DFB laser. Each of the fiber Bragg gratings has a narrow reflective linewidth centered about the same wavelength so that the optical fiber section operates as a fiber Bragg grating DFB-DBR interactive laser upon sufficient pumping energy. The resulting fiber Bragg grating DFB-DBR interactive laser can be appropriately connected to pumping laser sources and WDM couplers to create fiber laser sources which are particularly adaptable to fiberoptic networks, particularly WDM and DWDM networks.
Abstract:
A fiberoptic coupler capable of many functions is presented. The basic fiberoptic coupler has a first sleeve, a second sleeve, a first collimating GRIN or conventional lens, and a second collimating GRIN or conventional lens. The first sleeve holds end sections of two or more input optical fibers along the longitudinal axis of the sleeve. The second sleeve holds an end section of at least one output optical fiber. The end face of the second sleeve faces the first sleeve end face. The first collimating GRIN or conventional lens in front of the first sleeve end face collimates light signals from the input optical fibers and the second collimating GRIN or conventional lens in front of the second sleeve end face focusses light signals from at least one of the input optical fibers into the single output fiber, or at least one of the output optical fibers. With only one output fiber the coupler operates as a combiner. If more than one output fiber is held by the second sleeve, the input and output fibers can be arranged so that a light signal from one input fiber is sent to one output fiber. For added functionality, optical elements, such as isolators and wavelength-dependent filters, can be inserted between the first and second collimating lenses.
Abstract:
An improved optical switch having a first optical fiber and a plurality of N optical fibers. The first optical fiber forms an optical path with any one of the N optical fibers by an alignment of a longitudinal axis of an end of the first optical fiber with a longitudinal axis of an end of the one of N optical fibers. A switch in optical path is performed by a relative movement of the first optical fiber with respect to the N optical fibers for a realignment of the longitudinal axis of the end of the first optical fiber with a longitudinal axis of an end of another one of the N optical fibers.