摘要:
An aggregate composition and process for making the aggregate composition. The aggregate composition includes an insoluble rare earth-containing compound and a polymer binder. The insoluble rare earth-containing compound can include one or more of cerium, lanthanum, or praseodymium. A suitable insoluble cerium-containing compound can be derived from cerium carbonate or a cerium salt. In a specific embodiment, the aggregate composition consists essentially of one or more cerium oxides, the polymer binder and optionally a flow aid. A process for making the composition includes mixing the insoluble rare earth-containing compound with a polymer binder to form a mixture, and subjecting the mixture to mechanical, chemical and/or thermal treatment to adhere the rare earth compound to the polymer binder. The aggregate composition can be used in a variety of fluid treatment applications to remove one or more chemical and biological contaminants in a fluid.
摘要:
The present invention is a secondary battery having a high specific capacity and good cycleability, and that can be used safely. The secondary battery is manufactured to include an anode formed from a host material capable of absorbing and desorbing lithium in an electrochemical system such as a carbonaceous material, and lithium metal dispersed in the host material. The freshly prepared anodes of the invention are combined with a positive electrode including an active material, a separator that a separates the positive electrode and the negative electrode, and an electrolyte in communication with the positive electrode and the negative electrode. The present invention also includes a method of preparing a freshly prepared anode and a method of operating a secondary battery including the anode of the invention.
摘要:
The present invention includes lithium cobalt oxides having hexagonal layered crystal structures and methods of making same. The lithium cobalt oxides of the invention have the formula LiwCo1−xAxO2+y wherein 0.96≦w≦1.05, 0≦x≦0.05, −0.02≦y≦0.02 and A is one or more dopants. The lithium cobalt oxides of the invention preferably have a position within the principal component space defined by the relationship axi+byi≦c, wherein xi={right arrow over (S)}i•{right arrow over (P)}c1; yi={right arrow over (S)}i•{right arrow over (P)}c2; the vector {right arrow over (S)}i is the x-ray spectrum for the LiwCo1−xAxO2+y compound; the vectors {right arrow over (P)}c1 and {right arrow over (P)}c2 defining the principal component space are determined by measuring the x-ray powder diffraction values {right arrow over (S)}i between 15° and 120° using a 0.02° step size and CuKα rays for a large sample set of lithium cobalt oxides and using the regression of {right arrow over (S)}i of the sample set against the capacity fade after 50 cycles of a lithium coin cell that includes a lithium negative electrode and the lithium cobalt oxide as the positive electrode material and that is cycled between 3.0 and 4.3V at a constant current of C/3 during both charge and discharge cycles; and the values a, b and c are determined by using only the xi and yi values for LiwCo1−xAxO2+y compounds in the sample set that have a capacity fade after 50 cycles of less than or equal to 15%.
摘要:
The present invention includes lithium cobalt oxides having hexagonal layered crystal structures and methods of making same. The lithium cobalt oxides of the invention have the formula LiwCo1−xAxO2+y wherein 0.96≦w≦1.05, 0≦x≦0.05, −0.02≦y≦0.02 and A is one or more dopants. The lithium cobalt oxides of the invention preferably have a position within the principal component space defined by the relationship axi+byi≦c, wherein xi={right arrow over (S)}i&Circlesolid;{right arrow over (P)}c1; yi={right arrow over (S)}i&Circlesolid;{right arrow over (P)}c2; the vector {right arrow over (S)}i is the x-ray spectrum for the LiwCo1−xAxO2+y compound; the vectors {right arrow over (P)}c1 and {right arrow over (P)}c2 defining the principal component space are determined by measuring the x-ray powder diffraction values {right arrow over (S)}i between 15° and 120° using a 0.02° step size and CuK&agr; rays for a large sample set of lithium cobalt oxides and using the regression of {right arrow over (S)}i of the sample set against the capacity fade after 50 cycles of a lithium coin cell that includes a lithium negative electrode and the lithium cobalt oxide as the positive electrode material and that is cycled between 3.0 and 4.3V at a constant current of C/3 during both charge and discharge cycles; and the values a, b and c are determined by using only the xi and yi values for LiwCo1−xAxO2+y compounds in the sample set that have a capacity fade after 50 cycles of less than or equal to 15%.
摘要翻译:本发明包括具有六方晶系结构的锂钴氧化物及其制造方法。 本发明的锂钴氧化物具有式LiwCo1-xAxO2 + y,其中0.96 <= w <= 1.05,0 <= x <= 0.05,0.02 <= y <0.02,A是一种或多种掺杂剂。 本发明的锂钴氧化物优选具有由关系axi + byi <= c定义的主要成分空间内的位置,其中xi = {向右箭头(Si&Circlef; {向右箭头(Pc1; yi = {向右箭头 (Si&Circlef; {向右箭头(Pc2;向量{向右箭头(Si是LiwCo1-xAxO2 + y化合物的x射线光谱);向量(向右箭头(Pc1和{向右箭头(Pc2定义 通过测量x射线粉末衍射值(右箭头(在15°和120°之间的Si,使用0.02°步长的Si和用于大型锂钴氧化物的样品组的CuKalpha射线)并使用{ 向右箭头(相对于包含锂负极和锂钴氧化物作为正极材料的锂电池的循环50次循环后的容量褪色,并且以恒定电流在3.0和4.3V之间循环的样品组的Si 在充电和放电期间的C / 3 循环; 并且通过仅使用少于或等于15%的50个循环之后具有容量衰减的样品组中的LiwCo1-xAxO2 + y化合物的xi和yi值来确定值a,b和c。
摘要:
The molecular weight of a polyolefin such as polypropylene is reduced, as evidenced by lowered viscosity and increased melt flow rate, by treatment with an inorganic peroxygen selected from metal persulfates, ammonium persulfates, and any mixtures thereof. The treatment avoids or minimizes the color or odor attendant treatment with organic peroxygens and the toxic products of organic persulfate decomposition, and avoids the special handling required with organic peroxides.
摘要:
Novel compositions useful as fluid gelling agents, especially for use in subterranean applications such as drilling fluids, are prepared by reacting an aqueous dispersion of a clay, such as bentonite, with an aqueous gel of a monodispersed mixed metal layered hydroxide of the formula Li.sub.m D.sub.d T(OH).sub.(m+2d+3+na) A.sub.a.sup.n, where D is a divalent metal, such as Mg, T is a trivalent metal, such as Al, and A represents other monovalent or polyvalent anions, the formula being described in detail in the disclosure.
摘要:
Useful compositions are prepared by incorporating into organic materials, crystalline lithium aluminates which conform substantially to the empirical formula(LiA.sub.x).sub.y.2Al(OH).sub.3.nH.sub.2 Owhere A represents one or more anions and/or negative-valence radicals,where x represents a quantity of A ions and/or radicals sufficient to substantially satisfy the valence requirements of the Li,where y is a numerical value sufficient to maintain the crystalline structure,and where n represents the number of waters of hydration, if any.
摘要:
Useful compositions are prepared by incorporating into organic materials, crystalline lithium aluminates which conform substantially to the empirical formula(LiA.sub.x).sub.y.2Al(OH).sub.3.nH.sub.2 Owhere A represents one or more anions and/or negative-valence radicals,where x represents a quantity of A ions and/or radicals sufficient to substantially satisfy the valence requirements of the Li,where y is a numerical value sufficient to maintain the crystalline structure,and where n represents the number of waters of hydration, if any.
摘要:
Novel compositions useful as fluid gelling agents, especially for use in subterranean applications such as drilling fluids, are prepared by reacting an aqueous dispersion of a clay, such as bentonite, with an aqueous gel of a monodispersed mixed metal layered hydroxide of the formula Li.sub.m D.sub.d T(OH).sub.(m+2d+3+na) A.sub.a.sup.n, where D is a divalent metal, such as Mg, T is a trivalent metal, such as Al, and A represents other monovalent or polyvalent anions, the formula being described in detail in the disclosure.
摘要:
Novel compositions useful as fluid gelling agents, especially for use in subterranean applications such as drilling fluids, are prepared by reacting an aqueous dispersion of a clay, such as bentonite, with an aqueous gel of a monodispersed mixed metal layered hydroxide of the formula Li.sub.m D.sub.d T(OH).sub.m+2d+3+na) A.sub.a.sup.n, where D is a divalent metal, such as Mg, T is a trivalent metal, such as Al, and A represents other monovalent or polyvalent anions, the formula being described in detail in the disclosure.