Abstract:
The present invention discloses a semiconductor device, comprising: a substrate, an insulating isolation layer formed on the substrate, a first active region layer and a second active region layer formed in the insulating isolation layer, characterized in that the carrier mobility of the first active region layer and/or second active region layer is higher than that of the substrate. In accordance with the semiconductor device and the manufacturing method thereof in the present invention, an active region formed of a material different from that of the substrate is used, the carrier mobility in the channel region is enhanced, thereby the device response speed is substantially improved and the device performance is enhanced greatly. Furthermore, unlike the existing STI manufacturing process, for the present invention, an STI is formed first, and then filling is performed to form an active region, thus avoiding the problem of generation of holes in STI, and improving the device reliability.
Abstract:
The present invention discloses a method of manufacturing a fin field effect transistor, which comprises the steps of forming a plurality of first fin structures on a substrate, which extend along a first direction parallel to the substrate; forming a plurality of second fin structures on a substrate, which extend along a second direction parallel to the substrate and the second direction intersecting with the first direction; selectively removing a part of the second fin structures to form a plurality of gate lines; and selectively removing a part of the first fin structures to form a plurality of substrate lines. In the method of manufacturing a fin field effect transistor according to the present invention, the gate lines and substrate lines are formed simultaneously by first making uniform silicon wing lines and gate wing lines using a limiting photolithography patternizing technique and then performing a centralized cutting of the corresponding specific regions, thereby increasing uniformity and reducing process difficulty and cost.
Abstract:
The present invention provides a method of manufacturing a dummy gate in a gate last process, which comprises the steps of forming a dummy gate material layer and a hard mask material layer sequentially on a substrate; etching the hard mask material layer to form a top-wide-bottom-narrow hard mask pattern; dry etching the dummy gate material layer using the hard mask pattern as a mask to form a top-wide-bottom-narrow dummy gate. According to the dummy gate manufacturing method of the present invention, instead of vertical dummy gates used conventionally, top-wide-bottom-narrow trapezoidal dummy gates are formed, and after removing the dummy gates, trapezoidal trenches can be formed. It facilitates the subsequent filling of the high-k or metal gate material and enlarges the window for the filling process; as a result, the device reliability will be improved.
Abstract:
The present invention discloses a method for monitoring the removal of a polycrystalline silicon dummy gate, comprising the steps of: forming a polycrystalline silicon dummy gate structure on a surface of a wafer; determining a measurement target and an error range of mass of the wafer; and measuring the mass of the wafer by a mass measurement tool after polycrystalline silicon dummy gate removal to determine whether the polycrystalline silicon dummy gate has been completely removed. According to the measurement method of the present invention, the full wafer may be quickly and accurately measured without requiring a specific test structure, to effectively monitor and determine whether the polysilicon dummy gate is thoroughly removed, meanwhile said measurement method gives feedback directly, quickly and accurately without causing any damage to the wafer.
Abstract:
A semiconductor device and a method for manufacturing the same, the method comprising: providing a semiconductor substrate; forming a dummy gate area on the substrate, forming spacers on sidewalls of the gate area, and forming source and drain areas in the semiconductor substrate on both sides of the dummy gate area, the dummy gate area comprising an interface layer and a dummy gate electrode; forming a dielectric cap layer on the dummy gate area and source and drain areas; planarizing the device with the dielectric cap layer on the source and drain areas as a stop layer; further removing the dummy gate electrode to expose the interface layer; and forming replacement gate area on the interface layer. The thickness of the gate groove may be controlled by the thickness of the dielectric cap layer, and the replacement gates of desired thickness and width may be further formed upon requirements. Thus, the aspect ratio of the gate groove is reduced and a sufficient low gate resistance is ensured.
Abstract:
The present invention forms Hf1-xSixOy having a cubic phase or a tetragonal phase by doping a specific amount of SiO2 component into the high-K gate dielectric material HfO2 in combination with an optimized thermal processing technique, to thereby acquire a high-K gate dielectric thin film material having a greater bandgap, a higher K value and high thermal stability. Besides, the high-K gate dielectric thin film and a preparation method thereof proposed in the present invention are helpful to solve the problem of crystallization of ultra-thin films.
Abstract:
There is provided a method for forming a metal interlayer via, comprising: forming a seed layer on a first dielectric layer and a first metal layer embedded in the first dielectric layer; forming a mask pattern on the seed layer to expose a portion of the seed layer covering some of the first metal layer; growing a second metal layer on the exposed portion of the seed layer; removing the mask pattern and a portion of the seed layer carrying the mask pattern to expose side walls of the second metal layer, a portion of the first metal layer and the first dielectric layer; forming an insulating barrier layer on the side walls, the portion of the first metal layer and the first dielectric layer. There is also provided a method for forming a metal interconnection line. Both of them can suppress the occurrence of voids. There is further provided a metal interconnection structure comprising a contact plug, a via and a metal interconnection line, wherein the via is formed on the metal interconnection line, the metal gate and/or the contact plug.
Abstract:
One embodiment of present invention provides a method for manufacturing a semiconductor structure, which comprises: forming a gate stack on a semiconductor substrate and removing parts of the substrates situated on two sides of the gate stack; forming sidewall spacers on sidewalls of the gate stack and on sidewalls of the part of the substrate under the gate stack; forming doped regions in parts of the substrate on two sides of the gate stack, and forming a first dielectric layer to cover the entire semiconductor structure; selectively removing parts of the gate stack and parts of the first dielectric layer to form a channel region opening and source/drain region openings; forming a high K dielectric layer on sidewalls of the channel region opening; and implementing epitaxy process to form a continuous fin structure that spans across the channel region opening and the source/drain region openings.
Abstract:
A method of manufacturing a FinFET semiconductor device is provided, wherein the semiconductor fins are formed in a parallel arrangement which intersects the gates arranged in parallel. The polycrystalline silicon layer is deposited and then converted into a single crystal silicon layer such that the single crystal silicon layer and the semiconductor fins are integrated in essence, i.e., the source/drain region in the semiconductor fins is raised and the top area of the semiconductor fins is extended. Subsequently, the single crystal silicon layer above the top of the semiconductor fins is converted into a metal silicide so as to form a source/drain region contact. The source/drain region contact in the present invention has a larger area than that in a conventional FinFET, which decreases the contact resistance and facilitates the formation of a self-aligned metal plug in the follow-up process.
Abstract:
An embedded source/drain MOS transistor and a formation method thereof are provided. The embedded source/drain MOS transistor comprises: a semiconductor substrate; a gate structure on the semiconductor substrate; and a source/drain stack embedded in the semiconductor substrate at both sides of the gate structure with an upper surface of the source/drain stack being exposed, wherein the source/drain stack comprises a dielectric layer and a semiconductor layer above the dielectric layer. The present invention can cut off the path for the leakage current from the source region and the drain region to the semiconductor substrate, thereby reducing the leakage current from the source region and the drain region to the semiconductor substrate.