Abstract:
Systems and methods for providing micro defect inspection capabilities for optical systems are disclosed. Each given wafer image is filtered, treated and normalized prior to performing surface feature detection and quantification. A partitioning scheme is utilized to partition the wafer image into a plurality of measurement sites and metric values are calculated for each of the plurality of measurement sites. Furthermore, transformation steps may also be utilized to extract additional process relevant metric values for analysis purposes.
Abstract:
Predictive modeling based focus error prediction method and system are disclosed. The method includes obtaining wafer geometry measurements of a plurality of training wafers and grouping the plurality of training wafers to provide at least one training group based on relative homogeneity of wafer geometry measurements among the plurality of training wafers. For each particular training group of the at least one training group, a predictive model is develop utilizing non-linear predictive modeling. The predictive model establishes correlations between wafer geometry parameters and focus error measurements obtained for each wafer within that particular training group, and the predictive model can be utilized to provide focus error prediction for an incoming wafer belonging to that particular training group.
Abstract:
Wafer geometry measurement tools and methods for providing improved wafer geometry measurements are disclosed. Wafer front side, backside and flatness measurements are taken into consideration for semiconductor process control. The measurement tools and methods in accordance with embodiments of the present disclosure are suitable for handling any types of wafers, including patterned wafers, without the shortcomings of conventional metrology systems.
Abstract:
Systems and methods for providing improved scanner corrections are disclosed. Scanner corrections provided in accordance with the present disclosure may be referred to as wafer geometry aware scanner corrections. More specifically, wafer geometry and/or wafer shape signature information are utilized to improve scanner corrections. By removing the wafer geometry as one of the error sources that may affect the overlay accuracy, better scanner corrections can be obtained because one less contributing factor needs to be modeled.
Abstract:
Systems and methods for prediction and measurement of overlay errors are disclosed. Process-induced overlay errors may be predicted or measured utilizing film force based computational mechanics models. More specifically, information with respect to the distribution of film force is provided to a finite element (FE) model to provide more accurate point-by-point predictions in cases where complex stress patterns are present. Enhanced prediction and measurement of wafer geometry induced overlay errors are also disclosed.
Abstract:
Systems and methods for processing phase maps acquired using interferometer wafer geometry tools are disclosed. More specifically, instead of performing phase unwrapping first and then analyze the unwrapped data in a height domain, systems and methods in accordance with the present disclosure operate in a curvature domain without having to perform any phase unwrapping.
Abstract:
Methods and systems for detection of selected defects in relatively noisy inspection data are provided. One method includes applying a spatial filter algorithm to inspection data acquired across an area on a substrate to determine a first portion of the inspection data that has a higher probability of being a selected type of defect than a second portion of the inspection data. The selected type of defect includes a non-point defect. The inspection data is generated by combining two or more raw inspection data corresponding to substantially the same locations on the substrate. The method also includes generating a two-dimensional map illustrating the first portion of the inspection data. The method further includes searching the two-dimensional map for an event that has spatial characteristics that approximately match spatial characteristics of the selected type of defect and determining if the event corresponds to a defect having the selected type.
Abstract:
Systems and methods for unwrapping phase signals obtained from interferometry measurements of patterned wafer surfaces are disclosed. A phase unwrapping method in accordance with the present disclosure may calculate a front surface phase map and a back surface phase map of a wafer, subtract the back surface phase map from the front surface phase map to obtain a phase difference map, unwrap the phase difference map to obtain a wafer thickness variation map, unwrap the back surface phase map to obtain a back surface map representing the back surface of the wafer; and add the wafer thickness variation map to the back surface phase map to calculate a front surface map representing the front surface of the wafer.
Abstract:
A method of providing high accuracy inspection or metrology in a bright-field differential interference contrast (BF-DIC) system is described. This method can include creating first and second beams from a first light beam. The first and second beams have round cross-sections, and form first partially overlapping scanning spots radially displaced on a substrate. Third and fourth beams are created from the first light beam or a second light beam. The third and fourth beams have elliptical cross-sections, and form second partially overlapping scanning spots tangentially displaced on the substrate. At least one portion of the substrate can be scanned using the first and second partially overlapping scanning spots as the substrate is rotated. Radial and tangential slopes can be determined using measurements obtained from the scanning using the first and second partially overlapping scanning spots. These slopes can be used to determine wafer shape or any localized topography feature.
Abstract:
Systems and methods for improving results of wafer higher order shape (HOS) characterization and wafer classification are disclosed. The systems and methods in accordance with the present disclosure are based on localized shapes. A wafer map is partitioned into a plurality of measurement sites to improve the completeness of wafer shape representation. Various site based HOS metric values may be calculated for wafer characterization and/or classification purposes, and may also be utilized as control input for a downstream application. In addition, polar grid partitioning schemes are provided. Such polar grid partitioning schemes may be utilized to partition a wafer surface into measurement sites having uniform site areas while providing good wafer edge region coverage.