摘要:
The present invention provides a method for manufacturing a semiconductor device as well as a semiconductor device. The method, among other steps, may include forming a gate structure over a substrate, and forming a strain inducing sidewall spacer proximate a sidewall of the gate structure, the strain inducing sidewall configured to introduce strain in a channel region below the gate structure.
摘要:
The present invention provides a method for manufacturing a gate dielectric, a method for manufacturing a semiconductor device, and a method for manufacturing an integrated circuit. The method for manufacturing the gate dielectric, without limitation, may include forming a nitrided dielectric layer (520) over a substrate (310), the nitrided dielectric layer (520) having a non-uniformity of nitrogen in a bulk thereof, and removing at least a portion of the nitrided dielectric layer (520) using a high temperature chemical treatment, the removing reducing the non-uniformity.
摘要:
The present invention provides a method for manufacturing a semiconductor device and a method for manufacturing an integrated circuit including the same. The method for manufacturing the semiconductor device, among other steps, includes forming an L-shaped spacer (410) proximate a sidewall of a gate structure (130) located over a substrate (110), and implanting halo/pocket implant regions (620) through the L-shaped spacer (410) and in the substrate (110).
摘要:
Retrograde wells are formed by implanting through nitride films (40). Nitride films (40) are formed after STI (20) formation. By selectively masking a portion of the wafer with photoresist (47) after portions of a retrograde well are formed (45, 50, 55, and 60) the channeling of the subsequent zero degree implants is reduced.
摘要:
A transistor (30) and method for forming a transistor using an edge blocking material (24) is disclosed herein. The edge blocking material (24) may be located adjacent a gate (22) or disposable gate or may be part of a disposable gate. During an angled pocket implant, the edge blocking material (24) blocks some dopant from entering the semiconductor body (10) and the dopant (18) placed under the edge blocking material is located at a given distance below the surface of the semiconductor body (10).
摘要:
A mixed voltage CMOS process for high reliability and high performance core transistors and input-output and analog transistors with reduced mask steps. A patterned silicon nitride film 160 is used to selectively mask various implant species during the formation of the LDD regions 180, 220, and the pocket regions 190, 230 of the core transistors 152, 154. The LDD regions 240, 200 of the I/O or analog transistors 156, 158 are simultaneously formed during the process.
摘要:
A first test structure (40) is used to measure both the gate resistance/linewidth and transistor performance. A gate line (42) crosses a moat region (44) with source (48) and drain (50) regions formed on either side of the gate line (42). The gate line (42) is connected to four probe pads (52) in an H configuration for accurate linewidth measurements. A second test structure (70) may be used alone or in conjunction with the first test structure. A single gate line (72) crosses a moat region (74) several times. This allows both capacitance and gate gate-resistance measurements with the same test structure and for more accurate TLD measurement.
摘要:
A method for semiconductor processing is provided, wherein a removal of one or more layers is aided by structurally weakening the one or more layers via ion implantation. A semiconductor substrate is provided having one or more primary layers formed thereon, and a secondary layer is formed over the one or more primary layers. One or more ion species are implanted into the secondary layer, therein structurally weakening the secondary layer, and a patterned photoresist layer is formed over the secondary layer. Respective portions of the secondary layer and the one or more primary layers that are not covered by the patterned photoresist layer are removed, and the patterned photoresist layer is further removed. At least another portion of the secondary layer is removed, wherein the structural weakening of the secondary layer increases a removal rate of the at least another portion of the secondary layer.
摘要:
A method of forming sidewall spacers for a gate in a semiconductor device includes re-oxidizing/annealing silicon of the substrate and silicon of the gate after formation of the gate. The substrate is re-oxidized by performing an anneal in an inert atmosphere or ambient. The substrate may be re-oxidized/annealing after depositing an oxide layer covering the substrate and gate. Additionally, the substrate may be re-oxidized/annealing after forming the gate without depositing the oxide layer.
摘要:
A field effect transistor with a dual-counterdoped channel is disclosed. The transistor features a channel comprising a first doped region (28) and a second doped region (26) underlying the first doped region. A source and drain (32) are formed adjacent to the channel. In one embodiment of the present invention, the first doped region (28) is doped with arsenic, while the second doped region (26) is doped with phosphorus. The high charge-carrier mobility of the subsurface channel layer (28) allowing a lower channel dopant concentration to be used, which in turn allows lower source/drain pocket doping. This reduces the capacitance and response time of the transistor.