摘要:
A method of making an IGFET with a multilevel gate that includes upper and lower gate levels is disclosed. The method includes providing a semiconductor substrate with an active region, forming a gate insulator on the active region, forming a first gate material with a thickness of at most 1000 angstroms on the gate inslator and over the active region, forming a first photoresist layer over the first gate material, irradiating the first photoresist layer with a first image pattern and removing irradiated portions of the first photoresist layer to provide openings above the active region, etching the first gate material through the openings in the first photoresist layer using the first photoresist layer as an etch mask for a portion of the first gate material that forms a lower gate level, removing the first photoresist layer, forming an upper gate level on the lower gate level after removing the first photoresist layer, and forming a source and drain in the active region. Advantageously, the first photoresist layer can be ultra-thin to enhance the accuracy in which the image pattern is replicated, thereby reducing variations in channel length and device performance.
摘要:
A semiconductor process in which at least one isolation structure is formed in a semiconductor substrate. An oxygen bearing species is introduced into portions of the semiconductor substrate proximal to the isolation structure. A gate dielectric layer is then formed on an upper surface of the semiconductor substrate. The presence of the oxygen bearing species in the proximal portions of the semiconductor substrate increases the oxidation rate of the portions relative to the oxidation rate of portions of the substrate that are distal to the isolation structures. In this manner, the first thickness of the gate dielectric over the proximal portions of the semiconductor substrate is greater than a second thickness of the gate oxide layer over remaining portions of the semiconductor substrate. The increased oxide thickness adjacent to the discontinuities of the isolation trench reduces the electric field across the oxide.
摘要:
A fabrication process and integrated circuit formed thereby are provided in which relatively thin sidewall spacers extend laterally from opposed sidewall surfaces of a transistor gate conductor. The present invention contemplates forming a gate structure upon a semiconductor substrate. Lightly doped drain impurity areas may be formed in the semiconductor substrate aligned with sidewall of the gate structure. An oxygen-containing dielectric layer is deposited upon the semiconductor topography, followed by deposition of an oxidizable metal upon the dielectric layer. The oxygen-containing dielectric and the oxidizable metal are thermally annealed such that metal oxide spacers are formed adjacent sidewall surfaces of the gate structure. In an embodiment, portions of the dielectric and the metal are selectively removed prior to the anneal. In an alternate embodiment, the metal and the dielectric are annealed first, followed by selective removal of portions of the resulting metal oxide. Following spacer formation, source and drain impurity areas may be formed in the semiconductor substrate aligned with sidewall surfaces of the spacers. A metal silicide may be formed upon upper surfaces of the gate conductor and the source and drain impurity areas.
摘要:
A method for isolating a first active region from a second active region, both of which are configured within a semiconductor substrate. The method comprises forming a dielectric masking layer above a semiconductor substrate. An opening is then formed through the masking layer. A pair of dielectric spacers are formed upon the sidewalls of the masking layer within the opening. A trench is then etched in the semiconductor substrate between the dielectric spacers. A first dielectric layer is then thermally grown on the walls and base of the trench. A CVD oxide is deposited into the trench and processed such that the upper surface of the CVD oxide is commensurate with the substrate surface. Portions of the spacers are also removed such that the thickness of the spacers is between about 0 to 200 .ANG.. Silicon atoms and/or barrier atoms, such as nitrogen atoms, are then implanted into regions of the active areas in close proximity to the trench isolation structure.
摘要:
An IGFET with metal spacers is disclosed. The IGFET includes a gate electrode on a gate insulator on a semiconductor substrate. Sidewall insulators are adjacent to opposing vertical edges of the gate electrode, and metal spacers are formed on the substrate and adjacent to the sidewall insulators. The metal spacers are electrically isolated from the gate electrode but contact portions of the drain and the source. Preferably, the metal spacers are adjacent to edges of the gate insulator beneath the sidewall insulators. The metal spacers are formed by depositing a metal layer over the substrate then applying an anisotropic etch. In one embodiment, the metal spacers contact lightly and heavily doped drain and source regions, thereby increasing the conductivity between the heavily doped drain and source regions and the channel underlying the gate electrode. The metal spacers can also provide low resistance drain and source contacts.
摘要:
A transistor is provided with a graded source/drain junction. At least two dielectric spacers are formed in sequence upon the gate conductor. Adjacent dielectric spacers have dissimilar etch characteristics. An ion implant follows the formation of at least two of the dielectric spacers to introduce dopants into the source/drain region of the transistor. The ion implants are placed in different positions a spaced distance from the gate conductor according to a thickness of the dielectric spacers. As the implants are introduced further from the channel, the implant dosage and energy is increased. In a second embodiment, the ion implants are performed in reverse order. The dielectric spacers pre-exist on the sidewall surfaces of the gate conductor. The spacers are sequentially removed followed by an ion implant. An etchant is used which attacks the spacer to be removed but not the spacer beneath to the one being removed. Each time, the implants are performed with a lower energy and with a lower dosage so as to grade the junction with lighter concentrations and energies as the implant areas approach the channel. Reversing the implantation process enables high-temperature thermal anneals required for high-concentration low-diffusivity dopants to be performed first. The LDD implant comprises dopants of lower concentration and higher diffusivity requiring lower temperature anneals. Performing lower temperature anneals later in the sequence affords a lessened opportunity for undesirable short-channel effects.
摘要:
A transistor and a transistor fabrication method for forming an LDD structure in which the n-type dopants associated with an n-channel transistor are formed prior to the formation of the p-type dopants is presented. The n-type source/drain and LDD implants generally require higher activation energy (thermal anneal) than the p-type source/drain and LDD implants. The n-type arsenic source/drain implant, which has the lowest diffusivity and requires the highest temperature anneal, is performed first in the LDD process formation. Performing such a high temperature anneal first ensures minimum additional migration of subsequent, more mobile implants. Mobile implants associated with lighter and less dense implant species are prevalent in LDD areas near the channel perimeter. The likelihood of those implants moving into the channel is lessened by tailoring subsequent anneal steps to temperatures less than the source/drain anneal step.
摘要:
An amorphized implant is performed to retard diffusion of ions in the source and drain regions. By retarding the diffusion of ions in these regions, a shallower junction is advantageously created in the silicon regions of the wafer. A slight degradation in leakage current is obtained if the amorphized implant is performed on both the source and the drain sides of a transistor. However, since the source region is a low voltage region with a very shallow junction, MOSFETs in both n-channel and p-channel regions are formed with improved performance and reliability. A method of fabricating an integrated circuit includes forming a gate electrode over a semiconductor substrate, forming a source mask extending over the drain region of the semiconductor substrate, and implanting an implant species into the source region of the semiconductor substrate to form an amorphous implant layer of the semiconductor substrate. The semiconductor substrate has a source region adjacent to a first side of the gate electrode and has a drain region adjacent to a second side of the gate electrode. The amorphous implant layer is self-aligned with the source mask and extends through the exposed region of the semiconductor substrate and the source region of the semiconductor substrate. The method further includes the step of implanting a source implant into the exposed region of the semiconductor substrate and the source region of the semiconductor substrate to form a source implant layer of the semiconductor substrate. The source implant layer extends a shallower depth into the semiconductor substrate than the amorphous implant layer.
摘要:
A method of forming a shallow junction in an IGFET is disclosed. The method includes forming a gate insulator on a semiconductor substrate of first conductivity type, forming a gate electrode on the gate insulator, forming a sidewall insulator on an edge of the gate electrode, forming a silicon-based spacer over the substrate such that the sidewall insulator separates and electrically isolates the spacer and the gate electrode, and diffusing a dopant of second conductivity type from the spacer into the substrate. The diffused dopant forms a shallow region of second conductivity type in the substrate, and a shallow junction is substantially laterally aligned with the edge of the gate electrode.
摘要:
A method for isolating a first active region from a second active region, both of which are configured within a semiconductor substrate. The method comprises forming a dielectric masking layer above a semiconductor substrate. An opening is then formed through the masking layer. A pair of dielectric spacers are formed upon the sidewalls of the masking layer within the opening. A trench is then etched in the semiconductor substrate between the dielectric spacers. A first dielectric layer is then thermally grown on the walls and base of the trench. A CVD oxide is deposited into the trench and processed such that the upper surface of the CVD oxide is commensurate with the substrate surface. Portions of the spacers are also removed such that the thickness of the spacers is between about 0 to 200 Å. Silicon atoms and/or barrier atoms, such as nitrogen atoms, are then implanted ino regions of the active areas in close proximity to the trench isolation structure.