摘要:
A method for fabricating a field effect transistor device includes forming a dummy gate stack on a first portion of a substrate, forming a source region and a drain region adjacent to the dummy gate stack, forming a ion doped source extension portion in the substrate, the source extension portion extending from the source region into the first portion of the substrate, forming an ion doped drain extension portion in the substrate, the drain extension portion extending from the drain region into the first portion of the substrate, removing a portion of the dummy gate stack to expose an interfacial layer of the dummy gate stack, implanting ions in the source extension portion and the drain extension portion to form a channel region in the first portion of the substrate, removing the interfacial layer, and forming a gate stack on the channel region of the substrate.
摘要:
A method of forming fin field effect transistor (finFET) devices includes forming a plurality of semiconductor fins over a buried oxide (BOX) layer; performing a nitrogen implant so as to formed nitrided regions in a upper portion of the BOX layer corresponding to regions between the plurality of semiconductor fins; forming a gate dielectric layer over the semiconductor fins and the nitrided regions of the upper portion of the BOX layer; and forming one or more gate electrode materials over the gate dielectric layer; wherein the presence of the nitrided regions of upper portion of the BOX layer prevents oxygen absorption into the gate dielectric layer as a result of thermal processing.
摘要:
A semiconductor device which includes fins of a semiconductor material formed on a semiconductor substrate and then a gate electrode formed over and in contact with the fins. An insulator layer is deposited over the gate electrode and the fins. A trench opening is then etched in the insulator layer. The trench opening exposes the fins and extends between the fins. The fins are then silicided through the trench opening. Then, the trench opening is filled with a metal in contact with the silicided fins to form a local interconnect connecting the fins.
摘要:
A field effect transistor device includes a substrate including a source region, a drain region, and a channel region disposed between the source region and the drain region, wherein the source region is connected to the channel region with a source extension portion, and the drain region is connected to the channel region with a drain extension portion, wherein the channel region includes a source transition portion including n-type and p-type ions and a drain transition portion including n-type and p-type ions, and a gate stack portion disposed on the channel region.
摘要:
A field effect transistor device includes a substrate including a source region, a drain region, and a channel region disposed between the source region and the drain region, wherein the source region is connected to the channel region with a source extension portion, and the drain region is connected to the channel region with a drain extension portion, a first spacer portion disposed on the source region, the drain region and a first portion of the source extension portion, and a first portion of the drain extension portion, a second spacer portion disposed on a second portion of the source extension portion, and a second portion of the drain extension portion, a gate stack portion disposed on the channel region.
摘要:
A method of forming fin field effect transistor (finFET) devices includes forming a plurality of semiconductor fins over a buried oxide (BOX) layer; performing a nitrogen implant so as to formed nitrided regions in a upper portion of the BOX layer corresponding to regions between the plurality of semiconductor fins; forming a gate dielectric layer over the semiconductor fins and the nitrided regions of the upper portion of the BOX layer; and forming one or more gate electrode materials over the gate dielectric layer; wherein the presence of the nitrided regions of upper portion of the BOX layer prevents oxygen absorption into the gate dielectric layer as a result of thermal processing.
摘要:
A method of manufacturing a semiconductor device is disclosed. A p-type substrate is doped to form an N-well in a selected portion of a p-type substrate adjacent an anode region of the substrate. A p-type doped region is formed in the anode region of the p-type substrate. The p-type doped region and the N-well form a p-n junction.
摘要:
In one aspect of the present invention, a field effect transistor (FET) device includes a first FET including a dielectric layer disposed on a substrate, a first portion of a first metal layer disposed on the dielectric layer, and a second metal layer disposed on the first metal layer, a second FET including a second portion of the first metal layer disposed on the dielectric layer, and a boundary region separating the first FET from the second FET.
摘要:
A method for forming a field effect transistor (FET) device includes forming a dielectric layer on a substrate, forming a first metal layer on the dielectric layer, removing a portion of the first metal layer to expose a portion of the dielectric layer, forming a second metal layer on the dielectric layer and the first metal layer, and removing a portion of the first metal layer and the second metal layer to define a boundary region between a first FET device and a second FET device.
摘要:
A gate stack structure for field effect transistor (FET) devices includes a nitrogen rich first dielectric layer formed over a semiconductor substrate surface; a nitrogen deficient, oxygen rich second dielectric layer formed on the nitrogen rich first dielectric layer, the first and second dielectric layers forming, in combination, a bi-layer interfacial layer; a high-k dielectric layer formed over the bi-layer interfacial layer; a metal gate conductor layer formed over the high-k dielectric layer; and a work function adjusting dopant species diffused within the high-k dielectric layer and within the nitrogen deficient, oxygen rich second dielectric layer, and wherein the nitrogen rich first dielectric layer serves to separate the work function adjusting dopant species from the semiconductor substrate surface.