摘要:
According to one embodiment, a nonvolatile semiconductor memory device includes a substrate, a stacked body, a semiconductor pillar, a charge storage film, and a drive circuit. The stacked body is provided on the substrate. The stacked body includes a plurality of insulating films alternately stacked with a plurality of electrode films. A through-hole is made in the stacked body to align in a stacking direction. The semiconductor pillar is buried in an interior of the through-hole. The charge storage film is provided between the electrode film and the semiconductor pillar. The drive circuit supplies a potential to the electrode film. The diameter of the through-hole differs by a position in the stacking direction. The drive circuit supplies a potential to reduce a potential difference with the semiconductor pillar as a diameter of the through-hole piercing the electrode film decreases.
摘要:
A stacked body is formed on a silicon substrate by stacking a plurality of insulating films and a plurality of electrode films alternately and through-holes are formed to extend in the stacking direction. Next, gaps are formed between the electrode films using etching the insulating films via the through-holes. Charge storage layers are formed along side faces of the through-holes and inner faces of the gaps, and silicon pillars are filled into the through-holes. Thereby, a nonvolatile semiconductor memory device is manufactured.
摘要:
A non-volatile semiconductor storage device includes: a memory string including a plurality of memory cells connected in series; a first selection transistor having one end connected to one end of the memory string; a first wiring having one end connected to the other end of the first selection transistor; a second wiring connected to a gate of the first selection transistor. A control circuit is configured to boost voltages of the second wiring and the first wiring in the erase operation, while keeping the voltage of the first wiring greater than the voltage of the second wiring by a certain potential difference. The certain potential difference is a potential difference that causes a GIDL current.
摘要:
A nonvolatile semiconductor memory device, includes: a stacked structural unit including electrode films alternately stacked with inter-electrode insulating films; first and second semiconductor pillars piercing the stacked structural unit; a connection portion semiconductor layer electrically connect the first and second semiconductor pillars; a connection portion conductive layer provided to oppose the connection portion semiconductor layer; a memory layer and an inner insulating film provided between the first and semiconductor pillars and each of the electrode films, and between the connection portion conductive layer and the connection portion semiconductor layer; an outer insulating film provided between the memory layer and each of the electrode films; and a connection portion outer insulating film provided between the memory layer and the connection portion conductive layer. The connection portion outer insulating film has a film thickness thicker than a film thickness of the outer insulating film.
摘要:
A non-volatile semiconductor storage device includes a first layer and a second layer. The first layer includes: a plurality of first conductive layers extending in parallel to a substrate and laminated in a direction perpendicular to the substrate; a first insulation layer formed on an upper layer of the plurality of first conductive layers; a first semiconductor layer formed to penetrate the plurality of first conductive layers; and a charge accumulation layer formed between the first conductive layers and the first semiconductor layer. Respective ends of the first conductive layers are formed in a stepwise manner in relation to each other in a first direction. The second layer includes: a plurality of second conductive layers extending in parallel to the substrate and laminated in a direction perpendicular to the substrate, the second conductive layers being formed in the same layer as the plurality of first conductive layers; and a second insulation layer formed on an upper layer of the plurality of second conductive layers. Respective ends of the second conductive layers are formed to align along a straight line extending in a direction substantially perpendicular to the substrate at a predetermined area.
摘要:
A semiconductor device has a substrate, a source region formed on the surface portion of the substrate, a first insulating layer formed on the substrate, a gate electrode formed on the first insulating layer, a second insulating layer formed on the gate electrode, a body section connected with the source region, penetrating through the first insulating layer, the gate electrode and the second insulating layer, and containing a void, a gate insulating film surrounding the body section, and formed between the body section and the gate electrode, and a drain region connected with the body section.
摘要:
According to one embodiment, a nonvolatile semiconductor memory device includes a first and a second stacked structure, a first and a second semiconductor pillar, a semiconductor connection portion, a first and a second connection portion conductive layer, a first and a second pillar portion memory layer, a first and a second connection portion memory layer. The first and second stacked structures include electrode films and inter-electrode insulating films alternately stacked in a first direction. The second stacked structure is adjacent to the first stacked structure. The first and second semiconductor pillars pierce the first and second stacked structures, respectively. The semiconductor connection portion connects the first and second semiconductor pillars. The first and second pillar portion memory layers are provided between the electrode films and the semiconductor pillar. The first and second connection portion memory layers are provided between the connection portion conductive layers and the semiconductor connection portion.
摘要:
A semiconductor memory device includes: a semiconductor substrate; a stacked body with a plurality of conductive layers and a plurality of dielectric layers alternately stacked, the stacked body being provided on the semiconductor substrate; a semiconductor layer provided inside a hole formed through the stacked body, the semiconductor layer extending in stacking direction of the conductive layers and the dielectric layers; and a charge storage layer provided between the conductive layers and the semiconductor layer. The stacked body in a memory cell array region including a plurality of memory strings is divided into a plurality of blocks by slits with an interlayer dielectric film buried therein, the memory string including as many memory cells series-connected in the stacking direction as the conductive layers, the memory cell including the conductive layer, the semiconductor layer, and the charge storage layer provided between the conductive layer and the semiconductor layer, and each of the block is surrounded by the slits formed in a closed pattern.
摘要:
A memory string has a semiconductor layer with a joining portion that is formed to join a plurality of columnar portions extending in a vertical direction with respect to a substrate and lower ends of the plurality of columnar portions. First conductive layers are formed in a laminated fashion to surround side surfaces of the columnar portions and an electric charge storage layer, and function as control electrodes of memory cells. A second conductive layer is formed around the plurality of columnar portions via a gate insulation film, and functions as control electrodes of selection transistors. Bit lines are formed to be connected to the plurality of columnar portions, respectively, with a second direction orthogonal to a first direction taken as a longitudinal direction.
摘要:
A non-volatile semiconductor storage device has a plurality of memory strings with a plurality of electrically rewritable memory cells connected in series. Each of the memory strings includes: a memory columnar semiconductor extending in a direction perpendicular to a substrate; a tunnel insulation layer contacting the memory columnar semiconductor; a charge accumulation layer contacting the tunnel insulation layer and accumulating charges; a block insulation layer contacting the charge accumulation layer; and a plurality of memory conductive layers contacting the block insulation layer. The lower portion of the charge accumulation layer is covered by the tunnel insulation layer and the block insulation layer.