摘要:
A transistor structure optimizes current along the A-face of a silicon carbide body to form an AMOSFET that minimizes the JFET effect in the drift region during forward conduction in the on-state. The AMOSFET further shows high voltage blocking ability due to the addition of a highly doped well region that protects the gate corner region in a trench-gated device. The AMOSFET uses the A-face conduction along a trench sidewall in addition to a buried channel layer extending across portions of the semiconductor mesas defining the trench. A doped well extends from at least one of the mesas to a depth within the current spreading layer that is greater than the depth of the trench. A current spreading layer extends between the semiconductor mesas beneath the bottom of the trench to reduce junction resistance in the on-state. A buffer layer between the trench and the deep well further provides protection from field crowding at the trench corner.
摘要:
An electronic device includes a silicon carbide layer having a first conductivity type and a main junction adjacent a surface of the silicon carbide layer, and a junction termination region at the surface of the silicon carbide layer adjacent the main junction. Charge in the junction termination region decreases with lateral distance from the main junction, and a maximum charge in the junction termination region may be less than about 2×1014 cm−2.
摘要:
A semiconductor device includes a semiconductor layer having a first conductivity type, a metal contact on the semiconductor layer and forming a Schottky junction with the semiconductor layer, and a semiconductor region in the semiconductor layer. The semiconductor region and the semiconductor layer form a first p-n junction in parallel with the Schottky junction. The first p-n junction is configured to generate a depletion region in the semiconductor layer adjacent the Schottky junction when the Schottky junction is reversed biased to thereby limit reverse leakage current through the Schottky junction. The first p-n junction is further configured such that punch-through of the first p-n junction occurs at a lower voltage than a breakdown voltage of the Schottky junction when the Schottky junction is reverse biased.
摘要:
An electronic device includes a silicon carbide drift region having a first conductivity type, a Schottky contact on the drift region, and a plurality of junction barrier Schottky (JBS) regions at a surface of the drift region adjacent the Schottky contact. The JBS regions have a second conductivity type opposite the first conductivity type and have a first spacing between adjacent ones of the JBS regions. The device further includes a plurality of surge protection subregions having the second conductivity type. Each of the surge protection subregions has a second spacing between adjacent ones of the surge protection subregions that is less than the first spacing.
摘要:
Insulated gate bipolar conduction transistors (IBCTs) are provided. The IBCT includes a drift layer having a first conductivity type. An emitter well region is provided in the drift layer and has a second conductivity type opposite the first conductivity type. A well region is provided in the drift layer and has the second conductivity type. The well region is spaced apart from the emitter well region. A space between the emitter well region and the well region defines a JFET region of the IBCT. An emitter region is provided in the well region and has the first conductivity type and a buried channel layer is provided on the emitter well region, the well region and the JFET region and has the first conductivity type. Related methods of fabrication are also provided.
摘要:
A silicon carbide power device is fabricated by forming a p-type silicon carbide epitaxial layer on an n-type silicon carbide substrate, and forming a silicon carbide power device structure on the p-type silicon carbide epitaxial layer. The n-type silicon carbide substrate is at least partially removed, so as to expose the p-type silicon carbide epitaxial layer. An ohmic contact is formed on at least some of the p-type silicon carbide epitaxial layer that is exposed. By at least partially removing the n-type silicon carbide substrate and forming an ohmic contact on the p-type silicon carbide epitaxial layer, the disadvantages of using a p-type substrate may be reduced or eliminated. Related structures are also described.
摘要:
The present invention relates to a pharmaceutical composition with low toxicity for anti-inflammatory and anti-exudative which contains as active ingredients escin with general formula I and escin with general formula II as well as pharmaceutically acceptable carrier or excipient. In comparison with ESCIN, this pharmaceutical composition possesses the same anti-inflammatory and anti-exudative activity, but both toxicity and irritation lower remarkably.
摘要:
A bipolar junction transistor (BJT), which includes a collector layer, a base layer on the collector layer, an emitter layer on the base layer, and a recess region embedded in the collector layer, is disclosed. A base-collector plane is between the base layer and the collector layer. The recess region is may be below the base-collector plane. Further, the recess region and the base layer are a first type of semiconductor material. By embedding the recess region in the collector layer, the recess region and the collector layer form a first P-N junction, which may provide a point of avalanche for the BJT. Further, the collector layer and the base layer form a second P-N junction. By separating the point of avalanche from the second P-N junction, the BJT may avalanche robustly, thereby reducing the likelihood of avalanche induced failures, particularly in silicon carbide (SiC) BJTs.
摘要:
A thyristor includes a first conductivity type semiconductor layer, a first conductivity type carrier injection layer on the semiconductor layer, a second conductivity type drift layer on the carrier injection layer, a first conductivity type base layer on the drift layer, and a second conductivity type anode region on the base layer. The thickness and doping concentration of the carrier injection layer are selected to reduce minority carrier injection by the carrier injection layer in response to an increase in operating temperature of the thyristor. A cross-over current density at which the thyristor shifts from a negative temperature coefficient of forward voltage to a positive temperature coefficient of forward voltage is thereby reduced.
摘要:
An insulated gate bipolar transistor (IGBT) includes a first conductivity type substrate and a second conductivity type drift layer on the substrate. The second conductivity type is opposite the first conductivity type. The IGBT further includes a current suppressing layer on the drift layer. The current suppressing layer has the second conductivity type and has a doping concentration that is larger than a doping concentration of the drift layer. A first conductivity type well region is in the current suppressing layer. The well region has a junction depth that is less than a thickness of the current suppressing layer, and the current suppressing layer extends laterally beneath the well region. A second conductivity type emitter region is in the well region.