摘要:
A semiconductor device includes an n-type ohmic contact layer, cathode and anode electrodes, p-type and n-type modulation doped quantum well (QW) structures, and first and second ion implant regions. The anode electrode is formed on the first ion implant region that contacts the p-type modulation doped QW structure and the cathode electrode is formed by patterning the first and second ion implant regions and the n-type ohmic contact layer. The semiconductor device is configured to operate as at least one of a diode laser and a diode detector. As the diode laser, the semiconductor device emits photons. As the diode detector, the semiconductor device receives an input optical light and generates a photocurrent.
摘要:
Using a highly doped Cap layer of the same composition as the Contact material in an nBn or pBp infrared photodetector allows engineering of the energy band diagram to facilitate minority carrier current flow in the contact region and block minority current flow outside the Contact region. The heavily doped Cap layer is disposed on the Barrier between the Contacts but electrically isolated from the Contact material.
摘要:
An optical method of collapsing the electric field of an innovatively fabricated, reverse-biased PN junction causes a semiconductor switch to transition from a current blocking mode to a current conduction mode in a planar electron avalanche. This switch structure and the method of optically initiating the switch closure is applicable to conventional semiconductor switch configurations that employ a reverse-biased PN junction, including, but not limited to, thyristors, bipolar transistors, and insulated gate bipolar transistors.
摘要:
A device includes a semiconductor substrate having a plurality of doped layers forming first and second junctions. The semiconductor substrate includes a first surface and a second surface opposite the first surface. The device includes a plurality of waveguides defined by a plurality of glass inlaid channels defined within the first surface. Each of the plurality of glass inlaid channels extends through the second junction. The device includes a pattern of reflective elements associated with sidewalls of the plurality of glass inlaid channels to reflect light into the plurality of waveguides. A first electrically-conductive layer is disposed on the first surface and covers the plurality of glass inlaid channels.
摘要:
A semiconductor device is provided that includes an array of imaging cells realized from a plurality of layers formed on a substrate, wherein the plurality of layers includes at least one modulation doped quantum well structure spaced from at least one quantum dot structure. Each respective imaging cell includes an imaging region spaced from a corresponding charge storage region. The at least one quantum dot structure of the imaging region generates photocurrent arising from absorption of incident electromagnetic radiation. The at least one modulation doped quantum well structure defines a buried channel for lateral transfer of the photocurrent for charge accumulation in the charge storage region and output therefrom. The at least one modulation doped quantum well structure and the at least one quantum dot structure of each imaging cell can be disposed within a resonant cavity that receives the incident electromagnetic radiation or below a structured metal film having a periodic array of holes.
摘要:
There is provided a power semiconductor device, including a first conductive type drift layer; a second conductive type body layer formed on the drift layer, a second conductive type collector layer formed below the drift layer; a first gate formed by penetrating through the body layer and a portion of the drift layer, a first conductive type emitter layer formed in the body layer and formed to be spaced apart from the first gate, a second gate covering upper portions of the body layer and the emitter layer and formed as a flat type gate on the first gate, and a segregation stop layer formed between contact surfaces of the first and second gates with the body layer, the emitter layer, and the drift layer.
摘要:
An optoelectronic transmission system has a photoemitter semiconductor component and a photodetector semiconductor component. The photoemitter semiconductor component has a radiation source for converting a first electrical signal into a first electromagnetic radiation and a first polarization filter having a first polarization direction for filtering the first electromagnetic radiation. The photodetector semiconductor component has a second polarization filter having a second polarization direction for filtering a second electromagnetic radiation and a sensor element for converting a second electromagnetic radiation which has been polarized by the polarization filter into a second electrical signal. In this case, the first polarization direction of the first polarization filter is identical to the second polarization direction of the second polarization filter.
摘要:
A thyristor device includes a semiconductor body and a conductive anode. The semiconductor body has a plurality of doped layers forming a plurality of dopant junctions and includes an optical thyristor, a first amplifying thyristor, and a switching thyristor. The conductive anode is disposed on a first side of the semiconductor body. The optical thyristor is configured to receive incident radiation to generate a first electric current, and the first amplifying thyristor is configured to increase the first electric current from the optical thyristor to at least a threshold current. The switching thyristor switches to the conducting state in order to conduct a second electric current from the anode and through the semiconductor body.
摘要:
The present invention provides an optically triggered switch and a method of forming the optically triggered switch. The optically triggered switch includes a silicon layer having at least one trench formed therein and at least one silicon diode formed in the silicon layer. The switch also includes a first thyristor formed in the silicon layer. The first thyristor is physically and electrically isolated from the silicon diode by the trench and the first thyristor is configured to turn on in response to electromagnetic radiation generated by the silicon diode.
摘要:
The present invention provides an optically triggered switch and a method of forming the optically triggered switch. The optically triggered switch includes a silicon layer having at least one trench formed therein and at least one silicon diode formed in the silicon layer. The switch also includes a first thyristor formed in the silicon layer. The first thyristor is physically and electrically isolated from the silicon diode by the trench and the first thyristor is configured to turn on in response to electromagnetic radiation generated by the silicon diode.