摘要:
A magnetic memory device includes first and second ferromagnetic layers. Each ferromagnetic layer has a magnetization that can be oriented in either of two directions. The first ferromagnetic layer has a higher coercivity than the second ferromagnetic layer. The magnetic memory device further includes a structure for forming a closed flux path with the second ferromagnetic layer.
摘要:
A spin dependent tunneling (“SDT”) junction of a memory cell for a Magnetic Random Access Memory (“MRAM”) device includes a pinned ferromagnetic layer, followed by an insulating tunnel barrier and a sense ferromagnetic layer. During fabrication of the MRAM device, after formation of the pinned layer but before formation of the insulating tunnel barrier, an exposed surface of the pinned layer is flattened. The exposed surface of the pinned layer may be flattened by an ion etching process.
摘要:
A memory cell includes a conductor clad with ferromagnetic material; first and second spacer layers on opposite sides of the clad conductor; a first data layer on the first spacer layer; and a second data layer on the second spacer layer.
摘要:
A magnetic memory includes a circuit configured to apply a reverse magnetic field to one or more half-selected magnetic memory cells to improve half-select margin in the magnetic memory.
摘要:
A conductor structure for a magnetic memory is disclosed. The conductor structure includes one or more conductors that have a width that is less than a dimension of a memory cell in a direction the conductor crosses the memory cell. A thickness of the conductor is preselected to reduce a cross-sectional area of the conductor and increase a current density within the conductor. A magnetic field sufficient to rotate an alterable orientation of magnetization in a data layer of the memory cell can be generated by a reduced magnitude of a current flowing in the conductor due to the increased current density. Alternatively, the magnitude of the current can be reduced by increasing a thickness of the conductor to increase its area and reduce its resistance to the flow of electrons and partially cladding the conductor to reduce a total magnetic path around the conductor thereby increasing the magnetic field.
摘要:
A random access memory (memory) includes one or more planes of memory arrays stacked on top of each other. Each plane may be manufactured separately, and each array within the plane may be enabled/disabled separately. In this manner, each memory array within the plane can be individually tested, and defective memory arrays may be sorted out, which increases the final yield and quality. A memory plane may be stacked on top of each other and on top of an active circuit plane to make a large capacity memory device. The memory may be volatile or non-volatile by using appropriate memory cells as base units. Also, the memory plane may be fabricated separately from the active circuitry. Thus the memory plane does not require a silicon substrate, and may be formed from a glass substrate for example. Further, each memory plane may be individually selected (or enabled) via plane memory select transistors. The array may be individually selected (or enable) via array select transistor. These transistors may be formed from amorphous silicon transistor(s) and/or thin-film transistor(s). The data bus, array select bus, and the plane select bus provide electrical connections between the memory planes and the active circuit plane via side contact pads on each plane. 3-D memory for large storage capacity. The memory may be formed from one or more planes with each plane including one or more memory arrays. Each memory array of each plane may be separately enabled or disabled. The memory array may be formed on silicon or non-silicon based substrate. An active circuit plane may be shared among the memory arrays and planes to perform read and write functions.
摘要:
A magnetic memory cell is disclosed having a structure that prevents disruptions to the magnetization in the sense layer of the magnetic memory cell. In one embodiment, the structure includes a high permeability magnetic film that serves as a keeper for the sense layer magnetization. The keeper structure provides a flux closure path that directs demagnetization fields away from the sense layer. In another embodiment, the structure contains a hard ferromagnetic film that applies a local magnetic field to the sense layer in the magnetic memory cell.
摘要:
A magnetoresistive memory cell includes first and second conductive magnetic layers. One of the first and second layers is substantially “H” or “I” shaped. A separation layer is disposed between the first and second layers. In various embodiments, the separation layer is either conductive or nonconductive. In various embodiments, at least one of the first and second layers comprises one of a nickel-iron (NiFe), cobalt-iron (CoFe), or a nickel-iron-cobalt (NiFeCo) alloy. In one embodiment, the memory cell apparatus includes conductive magnetic reference and data layers. The data layer is substantially “H” or “I” shaped. A separation layer is disposed between the reference and data layers. The cell may be a tunneling magnetoresistive cell or a giant magnetoresistive cell. The separation layer is nonconductive in one embodiment and conductive in an alternative embodiment. In various embodiments, one of the reference and data layers comprises one of a nickel-iron, cobalt-iron, or a nickel-iron-cobalt alloy.
摘要:
A stabilized magnetic memory cell including a data storage layer having an interior region and a pair of end regions near a pair of opposing edges of the data storage layer and a stabilizing material that pins a magnetization in the end regions to a predetermined direction. A method for stabilizing a magnetic memory cell includes the steps of applying a magnetic field that rotates a magnetization in a pair of opposing side regions of a data storage layer of the magnetic memory cell toward a predetermined direction and that reduces free poles in a pair of opposing end regions of the magnetic memory cell, thereby reducing the likelihood of unpredictable switching behavior in the end regions.
摘要:
A new class of materials for use as a dielectric to separate various metallic layers within a magnetoresistive transducer. The materials include oxides of Ta, Hf, Zr, Y, Ti, or Nb. Thin films of these materials, when fabricated in accordance with the teachings of the invention, constitute dielectric films which maintain their integrity as insulators at thicknesses down to 5 nm. Additionally, the adhesion of this class of dielectrics equals or exceeds that of commonly used dielectrics.