摘要:
In one aspect, a method includes processing a metal substrate, performing a first etch on a first surface of the metal substrate to form, for an integrated circuit package, secondary leads and a curved component having two primary leads and performing a second etch, on a second surface of the substrate opposite the first surface, at locations on the secondary leads and locations on the curved component to provide a locking mechanism. Each primary lead located at a respective end of the curved component.
摘要:
A magnetic field sensor includes a lead frame, a semiconductor die supporting a magnetic field sensing element, a non-conductive mold material enclosing the die and a portion of the lead frame, a ferromagnetic mold material secured to the non-conductive mold material and a securing mechanism to securely engage the mold materials. The ferromagnetic mold material may comprise a soft ferromagnetic material to form a concentrator or a hard ferromagnetic material to form a bias magnet. The ferromagnetic mold material may be tapered and includes a non-contiguous central region, as may be an aperture or may contain the non-conductive mold material or an overmold material. Further embodiments include die up, lead on chip, and flip-chip arrangements, wafer level techniques to form the concentrator or bias magnet, integrated components, such as capacitors, on the lead frame, and a bias magnet with one or more channels to facilitate overmolding.
摘要:
A motion control device for controlling a motor is presented. The motion control device is operable to scale or adjust an input relative to an input range that is based on calibration values and to use that scaled input to produce a drive signal to drive the motor. The motion control device performs a self-calibration to produce the calibration values. The self-calibration involves measuring home position and full travel position values for the motor.
摘要:
An integrated circuit includes a sensor for providing a sensor output signal and a diagnostic circuit coupled to the sensor for providing a self-diagnostic signal. The self-diagnostic signal comprises the sensor output signal during a first time duration and an inverted sensor output signal during a second different time duration.
摘要:
A magnetic field sensor for low power applications includes a magnetic field sensing element that, during sample intervals, provides a signal proportional to a sensed magnetic field and also includes a comparator circuit that, during the sample intervals, compares the magnetic field signal to threshold levels to generate a sensor output signal indicative of a strength of the magnetic field. According to a dual sample rate feature, initially the magnetic field signal is sampled at a first predetermined sample rate and, following detection of a transition of the sensor output signal, is sampled at a second, faster predetermined sample rate for a predetermined interval. According to a user-programmable sample rate feature, a user may select to operate the sensor at a fixed, predetermined sample rate or at a user-specified sample rate. The magnetic field sensor may also or alternatively detect the speed and/or direction of rotation of a rotating magnetic article.
摘要:
A communications protocol is described that governs asynchronous exchange of data between a high level animation system and a low level animation system. The high level animation system has a variable, medium-frequency frame rate and is optimized for interactivity. The low level animation system has a constant, high frequency frame rate and is optimized for high refresh frame rate. The communications protocol includes messages that can be sent by the high-level animation system to the low-level animation system to designate an animation and how the animation is to change over a specified period of time. As a result, the low-level system can display the animation at the high refresh rate even if animation data is not received from the high-level system for every frame.
摘要:
A communications protocol is described that governs asynchronous exchange of data between a high level animation system and a low level animation system. The high level animation system has a variable, medium-frequency frame rate and is optimized for interactivity. The low level animation system has a constant, high frequency frame rate and is optimized for high refresh frame rate. The communications protocol includes messages that can be sent by the high-level animation system to the low-level animation system to designate an animation and how the animation is to change over a specified period of time. As a result, the low-level system can display the animation at the high refresh rate even if animation data is not received from the high-level system for every frame.
摘要:
A communications protocol is described that governs asynchronous exchange of data between a high level animation system and a low level animation system. The high level animation system has a variable, medium-frequency frame rate and is optimized for interactivity. The low level animation system has a constant, high frequency frame rate and is optimized for high refresh frame rate. The communications protocol includes messages that can be sent by the high-level animation system to the low-level animation system to designate an animation and how the animation is to change over a specified period of time. As a result, the low-level system can display the animation at the high refresh rate even if animation data is not received from the high-level system for every frame.
摘要:
A communications protocol is described that governs asynchronous exchange of data between a high level animation system and a low level animation system. The high level animation system has a variable, medium-frequency frame rate and is optimized for interactivity. The low level animation system has a constant, high frequency frame rate and is optimized for high refresh frame rate. The communications protocol includes messages that can be sent by the high-level animation system to the low-level animation system to designate an animation and how the animation is to change over a specified period of time. As a result, the low-level system can display the animation at the high refresh rate even if animation data is not received from the high-level system for every frame.