Abstract:
An electrostatically actuated micromechanical sensor having a guard band electrode for reducing the effect of transients associated with a dielectric substrate of the sensor. A proof mass, responsive to an input, is suspended over the substrate and one or more electrodes are disposed on the substrate in electrostatic communication with the proof mass to sense the input acceleration and/or to torque the proof mass back to a null position. A guard band electrode is disposed over the dielectric substrate in overlapping relationship with the electrodes and maintains the surface of the substrate at a reference potential, thereby shielding the proof mass from transients and enhancing the accuracy of the sensor. A dissolved wafer process for fabricating the micromechanical sensor is described in which the proof mass is defined by a boron doping step. An alternative fabrication technique is also described in which the proof mass is defined by an epitaxial layer.
Abstract:
A gimballed vibrating wheel gyroscope for detecting rotational rates in inertial space. The gyroscope includes a support oriented in a first plane and a wheel assembly disposed over the support parallel to the first plane. The wheel assembly is adapted for vibrating rotationally at a predetermined frequency in the first plane and is responsive to rotational rates about a coplanar input axis for providing an output torque about a coplanar output axis. The gyroscope also includes a post assembly extending between the support and the wheel assembly for supporting the wheel assembly. The wheel assembly has an inner hub, an outer wheel, and spoke flexures extending between the inner hub and the outer wheel and being stiff along both the input and output axes. A flexure is incorporated in the post assembly between the support and the wheel assembly inner hub and is relatively flexible along the output axis and relatively stiff along the input axis. With this arrangement, the wheel assembly is gimballed on the support. More particularly, the post flexure flexes in response to the output torque; whereas, the spoke flexures allow for the rotational vibration in the first plane. Also provided is a single semiconductor crystal fabrication technique which allows for improved device manufacture.
Abstract:
A, micromechanical tuning fork gyroscope is fabricated from a unitary silicon substrate utilizing etch stop diffusions and selective anisotropic etching. A silicon structure is suspended over the selectively etched pit. The silicon structure includes at least first and second vibratable structures. Each vibratable structure is energizable to vibrate laterally along an axis normal to the rotation sensitive axis. The lateral vibration of the first and second vibratable structures effects simultaneous vertical movement of at least a portion of the silicon structure upon the occurrence of angular rotation of the gyroscope about the rotation sensitive axis. The vertical movement of the silicon structure is sensed, and a voltage proportional to the movement is generated, for providing an indication of angular rate of rotation detected by the gyroscope.
Abstract:
A double gimbal micromachined gyroscopic transducer is provided in a substrate having a pit extending downwardly from a top surface of the substrate. A gyroscopic transducer element suspended above the pit comprises an outer sense gimbal plate integral with the substrate, coupled to the substrate by a pair of flexible elements attached to opposite ends of the plate. The flexible elements are axially aligned to permit oscillatory motion about a sense axis passing through the flexible elements. The gyroscopic transducer further includes an inner drive gimbal plate integral with and interior to the sense gimbal plate. The drive gimbal plate is coupled to the sense gimbal plate by a second pair of flexible elements along an axis orthogonal to the first pair of flexible elements. The drive gimbal plate also includes a balanced mass generally centrally located on the drive gimbal plate. Also included are drive and sense electronics, for energizing the drive gimbal plate to oscillate about the drive axis, and for sensing any movement of the sense gimbal plate indicative of an angular rate about an input axis. The sense electronics includes a sense electrode disposed so as not to be in close proximity to and interfere with free oscillatory motion of the drive gimbal plate.
Abstract:
A method and apparatus for electromagnetically rebalancing a micromechanical transducer via a plurality of current carrying electrodes disposed beneath or above the transducer interacting with a current carrying conductor disposed on the transducer. In a first embodiment, the micromechanical transducer comprises a micromechanical accelerometer having electromagnetic rebalance of an asymmetric plate. In an alternative embodiment, the transducer comprises a micromechanical gyroscope having electromagnetic driving of an outer gimbal and electromagnetic rebalance of a sense gimbal.
Abstract:
A method of making a micron gap thermal photovoltaic device wherein at least one standoff is formed on a photovoltaic substrate, a sacrificial layer is deposited on the photovoltaic substrate and about the standoff, an emitter is attached to the standoff and has a lower planar surface separated from the photovoltaic substrate by the sacrificial layer, and the sacrificial layer is removed to form a sub-micron gap between the photovoltaic substrate and the lower planar surface of the emitter.
Abstract:
A process for fabricating elongated inductive components that have one or more conductors surrounded along their active length by a magnetic layer. A substrate is provided having one or more narrow, elongated deposition regions, each such region bordered on both elongated sides by elongated openings in the substrate, so that at least some of each such region is accessible along all sides. Conductors are provided on these regions. An insulator is deposited over the conductors. A magnetic layer is deposited over the insulator.
Abstract:
This invention relates to the fabrication of planar inductive components whereby the design in cross-section describes a conductor surrounded by magnetic material along the length of the conductor; an electrical insulator is placed between the conductor and the magnetic material. Cases also apply where more than one independent conductor is used. The planar form allows integration of inductive components with integrated circuits. These inductive components can be embedded in other materials. They can also be fabricated directly onto parts.
Abstract:
A micron gap thermo-photo-voltaic device including a photovoltaic substrate, a heat source substrate, and a plurality of spacers separating the photovoltaic substrate from the heat source substrate by a submicron gap. Each spacer includes an elongated thin-walled structure disposed in a well formed in the heat source substrate and having a top surface less than a micron above the heat source substrate. Also disclosed are methods of making the spacers.
Abstract:
A rate gyroscope and accelerometer multisensor, and a process for fabricating the device. The device has an inner magnetically-suspended spinning wheel rotor, with outer stator portions adjacent both faces of the rotor. In one embodiment of the process, three substrates of magnetic material are provided. A first substrate is used to form the portion comprising the rotor. The other two substrates are used to form the outer stator portions. A series of spaced concentric grooves are formed in the central region of both faces of the first substrate. Outside of the grooves on both faces of the first substrate a series of spaced spiral grooves are formed. A hole is placed at the center of the spiral grooves, and filled with magnetic material. A conductor is then deposited into the spiral grooves. A central wheel is formed, the wheel carrying the spaced concentric grooves and defining along its edge a series of spaced teeth. A series of spaced serpentine grooves are formed on one active face of each of the other two substrates. On the same face, a series of generally radial grooves are formed. A conductor is then deposited into the serpentine grooves, and a magnetic material is deposited into the generally radial grooves. The active faces of the two outer substrates are then bonded against the first substrate such that the outer end of each magnetic path overlays a filled hole in the first substrate, to create the stator of an axial air gap reluctance motor.