摘要:
A time-of-flight ion sensor for monitoring ion species in a plasma includes a housing. A drift tube is positioned in the housing. An extractor electrode is positioned in the housing at a first end of the drift tube so as to attract ions from the plasma. A plurality of electrodes is positioned at a first end of the drift tube proximate to the extractor electrode. The plurality of electrodes is biased so as to cause at least a portion of the attracted ions to enter the drift tube and to drift towards a second end of the drift tube. An ion detector is positioned proximate to the second end of the drift tube. The ion detector detects arrival times associated with the at least the portion of the attracted ions.
摘要:
An in-situ ion sensor is disclosed for monitoring ion species in a plasma chamber. The ion sensor may comprise: a drift tube; an extractor electrode and a plurality of electrostatic lenses disposed at a first end of the drift tube, wherein the extractor electrode is biased to attract ions from a plasma in the plasma chamber, and wherein the plurality of electrostatic lenses cause at least one portion of the attracted ions to enter the drift tube and drift towards a second end of the drift tube within a limited divergence angle; an ion detector disposed at the second end of the drift tube, wherein the ion detector detects arrival times associated with the at least one portion of the attracted ions; and a housing for the extractor, the plurality of electrostatic lenses, the drift tube, and the ion detector, wherein the housing accommodates differential pumping between the ion sensor and the plasma chamber.
摘要:
A system for implanting a substrate. The system includes a substrate holder disposed within a process chamber of the system and coupled to ground. The system also includes an electrode disposed within the process chamber and coupled to a power source, the power source configured to supply voltage to the electrode as an unbalanced voltage pulse train, wherein a negative peak voltage during a negative voltage pulse period of the unbalanced voltage pulse train is higher than a positive peak voltage during a positive voltage pulse period of the unbalanced pulse train. The system further includes a movable mask, wherein the movable mask is configured to move between a first position proximate the substrate holder, and a second position proximate the driven electrode.
摘要:
A dual unbalanced indirectly heated cathode (IHC) ion chamber is disclosed. The cathodes have different surface areas, thereby affecting the amount of heat radiated by each. In the preferred embodiment, one cathode is of the size and dimension typically used for IHC ionization, as traditionally used for hot mode operation. The second cathode, preferably located on the opposite wall of the chamber, is of a smaller size. This smaller cathode is still indirectly heated by a filament, but due to its smaller size, radiates less heat into the source chamber, allowing the ion source to operate in cold mode, thereby preserving the molecular structure of the target molecules. In both modes, the unused cathode is preferably biased so as to be at the same potential as the IHC, thus allowing it to act as a repeller.
摘要:
An ion source is provided that utilizes a cooling plate and a gap interface to control the temperature of an ion source chamber. The gap interface is defined between the cooling plate and a wall of the chamber. A coolant gas is supplied to the interface at a given pressure where the pressure determines thermal conductivity from the cooling plate to the chamber to control the temperature of the interior of the chamber.
摘要:
In a cleaning process for an ion source chamber, an electrode positioned outside of the ion source chamber includes a suppression plug. When the cleaning gas is introduced intothe source chamber, the suppression plug may engage an extraction aperture of the source chamber to adjust the gas pressure within the chamber to enhance chamber cleaning via. plasma-enhanced chemical reaction. The gas conductance between the source chamber aperture and the suppression plug can be adjusted during the cleaning process to provide optimum cleaning conditions and to exhaust unwanted deposits.
摘要:
Techniques for plasma injection for space charge neutralization of an ion beam are disclosed. In one particular exemplary embodiment, the techniques may be realized as a plasma injection system for space charge neutralization of an ion beam. The plasma injection system may comprise a first array of magnets and a second array of magnets positioned along at least a portion of an ion beam path, the first array being on a first side of the ion beam path and the second array being on a second side of the ion beam path, the first side opposing the second side. At least two adjacent magnets in the first array of magnets may have opposite polarity. The plasma injection system may also comprise a plasma source configured to generate a plasma in a region associated with a portion of the ion beam path by colliding at least some electrons with a gas.
摘要:
An in-situ ion sensor is disclosed for monitoring ion species in a plasma chamber. The ion sensor may comprise: a drift tube; an extractor electrode and a plurality of electrostatic lenses disposed at a first end of the drift tube, wherein the extractor electrode is biased to attract ions from a plasma in the plasma chamber, and wherein the plurality of electrostatic lenses cause at least one portion of the attracted ions to enter the drift tube and drift towards a second end of the drift tube within a limited divergence angle; an ion detector disposed at the second end of the drift tube, wherein the ion detector detects arrival times associated with the at least one portion of the attracted ions; and a housing for the extractor, the plurality of electrostatic lenses, the drift tube, and the ion detector, wherein the housing accommodates differential pumping between the ion sensor and the plasma chamber.
摘要:
An apparatus is provided for handling workpieces, such as semiconductor wafers, during semiconductor processing. The apparatus includes a wafer platen having a plurality of channels each extending from a top surface to a bottom surface of the wafer platen, a plurality of lift pins in alignment with the channels, and a mechanism for engaging the lift pins in a loading position of the workpiece, a clamping position of the workpiece so that desired semiconductor processes may be performed to the workpiece, and a lift off position for removing the workpiece from the wafer platen after the semiconductor processes are completed. The mechanism places the lift pins below the surface of the wafer platen in the load position and then raises the lift pins to a first predetermined distance above the surface of the wafer platen in the clamp position such that the first predetermined distance allows the workpiece to be clamped to the wafer platen. Then, the mechanism places the lift pins at a second predetermined distance above the surface of the wafer platen in the lift off position such that a workpiece removing device, such as a robotic arm, may be positioned between the workpiece and the wafer platen without contacting either surface.
摘要:
A method of controlling operation of an indirectly-heated cathode (IHC) ion source includes a step of measuring a rate of loss of cathode weight of the IHC ion source that occurs during operation using a first cathode configuration and under a first set of operation conditions. A maximum weight loss for the first cathode configuration is determined, and a cathode lifetime is calculated based upon the rate of cathode weight loss and the maximum weight loss. A further method includes receiving a minimum source bias power value for operation of a cathode in a first configuration, measuring a rate of decrease in source bias power for a cathode in the first configuration, and calculating a lifetime of the cathode based upon the minimum source bias power and rate of decrease in source bias power.