摘要:
A system and method for controlling power and performance in a microprocessor system includes a monitoring and control system integrated into a microprocessor system. The monitoring and control system includes a hierarchical architecture having a plurality of layers. Each layer in the hierarchal architecture is responsive to commands from a higher level, and the commands provide instructions on operations and power distribution, such that the higher levels provide modes of operation and budgets to lower levels and the lower levels provide feedback to the higher levels to control and manage power usage in the microprocessor system both globally and locally.
摘要:
An information handling system includes a processor that throttles the instruction fetcher whenever the inaccuracy, or lack of confidence, in branch predictions for branch instructions stored in a branch instruction queue exceeds a predetermined threshold confidence level of inaccuracy or error. In this manner, fetch operations slow down to conserve processor power when it is likely that the processor will mispredict the outcome of branch instructions. Fetch operations return to full speed when it is likely that the processor will correctly predict the outcome of branch instructions.
摘要:
Leakage current control devices include a circuit having one or more functions in a data path where the functions are executed in a sequence. Each of the functions has power reduction logic to energize each respective function. A leakage control circuit interacts with the power reduction logic, so that the functions are energized or deenergized in a control sequence such that the functions where the data is resident are energized and at least one of the other functions is not energized.
摘要:
Power consumption in a microprocessor platform is managed by setting a peak power level for power consumed by a multi-core microprocessor platform executing multi-threaded applications. The multi-core microprocessor platform contains a plurality of physical cores, and each physical core is configurable into a plurality of logical cores. A simultaneous multithreading level in at least one physical core is adjusted by changing the number of logical cores on that physical core in response to a power consumption level of the multi-core microprocessor platform exceeding the peak power level. Performance and power data based on simultaneous multi-threading levels are used in selecting the physical core to be adjusted.
摘要:
Power consumption in a microprocessor platform is managed by setting a peak power level for power consumed by a multi-core microprocessor platform executing multi-threaded applications. The multi-core microprocessor platform contains a plurality of physical cores, and each physical core is configurable into a plurality of logical cores. A simultaneous multithreading level in at least one physical core is adjusted by changing the number of logical cores on that physical core in response to a power consumption level of the multi-core microprocessor platform exceeding the peak power level. Performance and power data based on simultaneous multi-threading levels are used in selecting the physical core to be adjusted.
摘要:
Illustrative embodiments estimate power consumption within a multi-core microprocessor chip. An authorized user selects a set of activities to be monitored. A value for each activity of the set of activities is stored in a separate counter of a set of counters, forming a set of stored values. The value comprises the count multiplied by a weight factor specific to the activity. The set of activities are grouped into subsets. The stored values corresponding to each activity in each subset are summed, forming a total value for each subset. The total value of each subset is multiplied by a factor corresponding to the subset, forming a scaled value for each subset. The scaled value of each subset is summed, forming a power usage value. A power manager adjusts the operational parameters of the unit based on a comparison of the power usage value to a threshold value.
摘要:
The illustrative embodiments described herein provide a computer-implemented method, apparatus, and a system for managing instructions. A load/store unit receives a first instruction at a port. The load/store unit rejects the first instruction in response to determining that the first instruction has a first reject condition. Then, the instruction sequencing unit activates a first bit in response to the load/store unit rejection the first instruction. The instruction sequencing unit blocks the first instruction from reissue while the first bit is activated. The processor unit determines a class of rejection of the first instruction. The instruction sequencing unit starts a timer. The length of the timer is based on the class of rejection of the first instruction. The instruction sequencing unit resets the first bit in response to the timer expiring. The instruction sequencing unit allows the first instruction to become eligible for reissue in response to resetting the first bit.
摘要:
A mechanism is provided for guarded, multi-metric resource control. Monitoring is performed for an intended action to address a negative condition from a resource manager in a plurality of resource managers in the data processing system. Responsive to receiving the intended action, a determination is made as to whether the intended action will cause an additional negative condition within the data processing system. Responsive to determining that the intended action will cause the additional negative condition within the data processing system, at least one alternative action is identified to be implemented in the data processing system that addresses the negative condition while not causing any additional negative condition. The at least one alternative action is then implemented in the data processing system.
摘要:
A mechanism is provided for two-level guarded predictive power gating of a set of units within the data processing system. A success determines whether a unit within the set of units is power gated during a monitoring interval. If the unit is power gated, the success monitor determines whether a count of idle cycles for the unit is below a breakeven point. If the count is above the breakeven point, the success monitor increments a success efficiency counter. If the count is below the breakeven point, the success monitor determines whether the unit needs to be woke up. If the unit needs to be woke up, the success monitor increments a harmful efficiency counter. If the value of the harmful efficiency counter is less than the value from the success efficiency counter, the success monitor enables power gating for the unit via a first-level power-gating mechanism.
摘要:
A data processing system includes a processor, a unit that includes a multi-level cache, a prefetch system and a memory. The data processing system can operate in a first mode and a second mode. The prefetch system can change behavior in response to a desired power consumption policy set by an external agent or automatically via hardware based on on-chip power/performance thresholds.