摘要:
A method of power management of a system of connected components includes initializing a token allocation map across the connected components, wherein each component is assigned a power budget as determined by a number of allocated tokens in the token allocation map, monitoring utilization sensor inputs and command state vector inputs, determining, at first periodic time intervals, a current performance level, a current power consumption level and an assigned power budget for the system based on the utilization sensor inputs and the command state vector inputs, and determining, at second periodic time intervals, a token re-allocation map based on the current performance level, the current power consumption level and the assigned power budget for the system, according to a re-assigned power budget of at least one of the connected components, while enforcing a power consumption limit based on a total number of allocated tokens in the system.
摘要:
A system and method for controlling power and performance in a microprocessor system includes a monitoring and control system integrated into a microprocessor system. The monitoring and control system includes a hierarchical architecture having a plurality of layers. Each layer in the hierarchical architecture is responsive to commands from a higher level, and the commands provide instructions on operations and power distribution, such that the higher levels provide modes of operation and budgets to lower levels and the lower levels provide feedback to the higher levels to control and manage power usage in the microprocessor system both globally and locally.
摘要:
A system and method for controlling power and performance in a microprocessor system includes a monitoring and control system integrated into a microprocessor system. The monitoring and control system includes a hierarchical architecture having a plurality of layers. Each layer in the hierarchal architecture is responsive to commands from a higher level, and the commands provide instructions on operations and power distribution, such that the higher levels provide modes of operation and budgets to lower levels and the lower levels provide feedback to the higher levels to control and manage power usage in the microprocessor system both globally and locally.
摘要:
A system and method for controlling power and performance in a microprocessor system includes a monitoring and control system integrated into a microprocessor system. The monitoring and control system includes a hierarchical architecture having a plurality of layers. Each layer in the hierarchal architecture is responsive to commands from a higher level, and the commands provide instructions on operations and power distribution, such that the higher levels provide modes of operation and budgets to lower levels and the lower levels provide feedback to the higher levels to control and manage power usage in the microprocessor system both globally and locally.
摘要:
A system and method for controlling power and performance in a microprocessor system includes a monitoring and control system integrated into a microprocessor system. The monitoring and control system includes a hierarchical architecture having a plurality of layers. Each layer in the hierarchal architecture is responsive to commands from a higher level, and the commands provide instructions on operations and power distribution, such that the higher levels provide modes of operation and budgets to lower levels and the lower levels provide feedback to the higher levels to control and manage power usage in the microprocessor system both globally and locally.
摘要:
A method of power management of a system of connected components includes initializing a token allocation map across the connected components, wherein each component is assigned a power budget as determined by a number of allocated tokens in the token allocation map, monitoring utilization sensor inputs and command state vector inputs, determining, at first periodic time intervals, a current performance level, a current power consumption level and an assigned power budget for the system based on the utilization sensor inputs and the command state vector inputs, and determining, at second periodic time intervals, a token re-allocation map based on the current performance level, the current power consumption level and the assigned power budget for the system, according to a re-assigned power budget of at least one of the connected components, while enforcing a power consumption limit based on a total number of allocated tokens in the system.
摘要:
A system and method for controlling power and performance in a microprocessor system includes a monitoring and control system integrated into a microprocessor system. The monitoring and control system includes a hierarchical architecture having a plurality of layers. Each layer in the hierarchal architecture is responsive to commands from a higher level, and the commands provide instructions on operations and power distribution, such that the higher levels provide modes of operation and budgets to lower levels and the lower levels provide feedback to the higher levels to control and manage power usage in the microprocessor system both globally and locally.
摘要:
Leakage current control devices include a circuit having one or more functions in a data path where the functions are executed in a sequence. Each of the functions has power reduction logic to energize each respective function. A leakage control circuit interacts with the power reduction logic, so that the functions are energized or deenergized in a control sequence such that the functions where the data is resident are energized and at least one of the other functions is not energized.
摘要:
Mechanisms are provided for predicting effects of soft errors on an integrated circuit device design. A data processing system is configured to implement a unified derating tool that includes a machine derating front-end engine used to generate machine derating information, and an application derating front-end engine used to generate application derating information, for the integrated circuit device design. The machine derating front-end engine executes a simulation of the integrated circuit device design to generate the machine derating information. The application derating front-end engine executes an application workload on existing hardware similar in architecture to the integrated circuit device design and injects a fault into the existing hardware during execution of the application workload to generate application derating information. The machine derating information is combined with the application derating information to generate at least one soft error rate value for the integrated circuit device design.
摘要:
Mechanisms for modeling system level effects of soft errors are provided. Mechanisms are provided for integrating device-level and component-level soft error rate (SER) analysis mechanisms with micro-architecture level performance analysis tools during a concept phase of the IC design to thereby generate a SER analysis tool. A first SER profile for the IC design is generated by applying the SER analysis tool to the IC design. At a later phase of the IC design, detailed information about SER vulnerabilities of logic and storage elements within the IC design are obtained and the first SER profile is refined based on the detailed information about SER vulnerabilities to thereby generate a second SER profile for the IC design. Modifications to the IC design are made at one or more phases of the IC design based on one of the first SER profile or the second SER profile.