-
公开(公告)号:US11951487B2
公开(公告)日:2024-04-09
申请号:US17285627
申请日:2020-05-09
申请人: QINGDAO UNIVERSITY OF TECHNOLOGY , RESEARCH INSTITUTE OF AGRICULTURAL MECHANIZATION XINJIANG ACADEMY OF AGRICULTURAL SCIENCES , XINJIANG JIANG NING LIGHT INDUSTRIAL MACHINERY ENGINEERING TECHNOLOGY CO., LTD.
发明人: Changhe Li , Mingzheng Liu , Xiaoming Wang , Huimin Yang , Xinping Li , Xiangdong Liu , Tuluhon Turdi , Ji Che , Lianxing Gao , Huayang Zhao , Xiaowei Zhang , Yanbin Zhang , Yifei Chen , Yali Hou
CPC分类号: B02C23/38 , B02C19/005 , B02C21/00 , B02C23/02 , B02C23/30
摘要: The present invention discloses a same-cavity integrated vertical high-speed multistage superfine pulverizing device and method for walnut shells. The same-cavity integrated vertical high-speed multistage superfine pulverizing device for walnut shells includes a double-channel sliding type feeding device and a same-cavity integrated vertical pulverizing device. The same-cavity integrated vertical pulverizing device includes a material lifting disc and a same-cavity integrated vertical pulverizing barrel. A first-stage coarse crushing region, a second-stage fine crushing region, a third-stage pneumatic impact micro pulverizing region and a fourth-stage airflow mill superfine pulverizing region are disposed in the same-cavity integrated vertical pulverizing barrel. Walnut shells falling through the double-channel sliding type feeding device are uniformly lifted by the material lifting disc to a wedge-shaped gap of the first-stage coarse crushing region to be coarsely crushed, and coarsely crushed materials are finely crushed by the second-stage fine crushing region through a two-stage wedge-shaped direct-through gradually reducing gap. The third-stage pneumatic impact micro pulverizing region performs high-speed collision on finely crushed walnut shell particles, and walnut shell fine particles are carried by a high-speed airflow and are collided and violently rubbed to be pulverized. The microparticle grading is realized by the fourth-stage airflow mill superfine pulverizing region by using arc-shaped blades, and microparticles conforming to a particle size condition are attracted out through negative pressure attraction.
-
32.
公开(公告)号:US11898699B2
公开(公告)日:2024-02-13
申请号:US17279491
申请日:2020-02-06
发明人: Changhe Li , Zhenjing Duan , Huajun Cao , Xuefeng Xu , Naiqing Zhang , Lan Dong , Yanbin Zhang , Xiufang Bai , Wentao Wu , Teng Gao , Min Yang , Dongzhou Jia , Runze Li , Yali Hou
IPC分类号: F16N7/32 , B23Q11/10 , B24B55/12 , F01M13/04 , B01D45/16 , F16C33/66 , B01D50/20 , B01D46/00
CPC分类号: F16N7/32 , B23Q11/1046 , B23Q11/1069 , B24B55/12 , B01D45/16 , B01D46/0031 , B01D50/20 , B01D2273/30 , F01M2013/0438 , F16C33/6662
摘要: An oil mist recovery, separation and purification device for a minimum quantity lubricant (MQL) grinding process, including: a pneumatic separation mechanism, a pipeline and a fan fixedly connected with one end of the pipeline, wherein the fan is configured to form a negative pressure in the pipeline, one cone-shaped filter mesh mechanism is disposed in the pipeline, and a tip of the cone-shaped filter mesh mechanism faces the side of an air inlet direction of the pipeline; and a filtering and recovery mechanism connected with the pipeline and including a case body, a filtering mechanism and a recovery mechanism, wherein the case body is connected with the pipeline through a connecting part, and the filtering mechanism is connected with the recovery mechanism. The device can separate, recover and reuse oil mist particles in the air.
-
公开(公告)号:US11819047B2
公开(公告)日:2023-11-21
申请号:US17279436
申请日:2020-02-06
申请人: QINGDAO UNIVERSITY OF TECHNOLOGY , XINJIANG JIANG NING LIGHT INDUSTRIAL MACHINERY ENGINEERING TECHNOLOGY CO., LTD.
发明人: Changhe Li , Mingzheng Liu , Yucheng Wang , Yanbin Zhang , Ji Che , Yali Hou , Xiaoming Wang , Yitian Feng , Rong Wang , Yiping Feng , Huaiyu Wang , Zhenming Jia , Lei Zhao , Guangzhen Miao , Runze Li , Teng Gao
IPC分类号: A23N5/00
CPC分类号: A23N5/00
摘要: A cam roller type horizontal extrusion cracking system for walnuts, including feeding, cracking and falling devices fixed accordingly on a stand. The feeding device includes a feeding box; an intermittent feeding roller is arranged therein; one side of the roller includes a feeding baffle plate, the other side includes an adjustable feeding scraper blade mechanism; and opposing feeding slots are formed in the roller. The cracking device includes an extrusion box body; movable and fixed tooth-shaped extrusion plates are oppositely mounted therein; one side of the movable plate opposite the fixed includes an extrusion cam; the plates have a plurality of tooth gaps; a walnut passes through the feeding device, falls into a gap between the plates; the cam drives the movable plate to do a periodic reciprocating motion, to synchronously cooperate with the fixed plate to perform extrusion cracking on the walnut.
-
公开(公告)号:US11794297B2
公开(公告)日:2023-10-24
申请号:US17341326
申请日:2021-06-07
申请人: QINGDAO UNIVERSITY OF TECHNOLOGY , SHANGHAI JINZHAO ENERGY SAVING TECHNOLOGY CO., LTD. , SHANXI JINZHAO AVIATION TECHNOLOGY CO., LTD.
发明人: Changhe Li , Xifeng Wu , Yixue Han , Naiqing Zhang , Yanbin Zhang , Qidong Wu , Huajun Cao , Teng Gao , Min Yang , Bingheng Lu , Yuying Yang , Xin Cui , Xufeng Zhao , Mingzheng Liu , Dongzhou Jia , Xiaowei Zhang , Hao Ma
CPC分类号: B23Q11/10 , B23C5/28 , B23Q11/1015 , B23Q11/1046 , B23Q17/249
摘要: The present disclosure provides an internal cooling/external cooling-switching milling minimum-quantity-lubrication intelligent nozzle system and method, relating to the field of milling lubrication. The system includes: a vision system, configured to acquire a real-time milling depth of a workpiece and send the real-time milling depth to a lubrication manner controller for processing; a lubrication system, including an internal cooling system and an external cooling system connected together to a cutting fluid supply source through a reversing device; and the lubrication manner controller, configured to communicate with the vision system and the lubrication system respectively, and control the reversing device to act according to a set milling depth threshold and data acquired by the vision system, so as to adjust and switch to the internal cooling system or the external cooling system to work. Milling depth data of a machine tool is collected, the milling depth data is transmitted to a control center for data analysis and processing, the data is compared with an initially set internal cooling/external cooling switching threshold to obtain the most suitable cooling and lubrication manner under current machining conditions of the machine tool, and the control center controls the internal cooling and external cooling systems according to the obtained result to realize intelligent switching of the cooling and lubrication manner between internal cooling and external cooling.
-
公开(公告)号:US11771126B2
公开(公告)日:2023-10-03
申请号:US16959607
申请日:2019-10-29
申请人: QINGDAO UNIVERSITY OF TECHNOLOGY , XINJIANG JIANG NING LIGHT INDUSTRIAL MACHINERY ENGINEERING TECHNOLOGY CO., LTD.
发明人: Changhe Li , Mingcun Shi , Yiping Feng , Yitian Feng , Zhenming Jia , Leilei Zhao , Rong Wang , Yucheng Wang , Yanbin Zhang , Ji Che , Runze Li , Cai Wang , Min Yang , Yali Hou
摘要: The present invention discloses a multi-station adaptive walnut shell pre-breaking system, comprising a feeding device and a shell pre-breaking device. The feeding device comprises a feeding box, a single-helix twister and a double-helix twister are disposed in the feeding box, the single-helix twister and the double-helix twister rotate in opposite directions, and an adjustable spring partition is disposed below the single-helix twister and the double-helix twister; the shell pre-breaking device comprises a shell pre-breaking box, a plurality of squeezing stations are provided in the shell pre-breaking box, each of the squeezing stations is provided with a shell pre-breaking assembly, the shell pre-breaking assembly comprises a falling U-shaped plate and a squeezing U-shaped plate, a first end of the falling U-shaped plate is hinged to the shell pre-breaking box, a second end of the falling U-shaped plate is pushed to move by a falling cam, the end of the squeezing U-shaped plate opposite to the first end of the falling U-shaped plate is pushed to move by a squeezing cam, the end of the squeezing U-shaped plate opposite to the second end of the falling U-shaped plate is hinged to the shell pre-breaking box, the squeezing cam is in an outer dwell state when the falling cam moves, and the falling cam is in an outer dwell state when the squeezing cam moves.
-
公开(公告)号:US11766753B2
公开(公告)日:2023-09-26
申请号:US17468668
申请日:2021-09-07
申请人: QINGDAO UNIVERSITY OF TECHNOLOGY , CHONGQING UNIVERSITY , SHANGHAI JINZHAO ENERGY SAVING TECHNOLOGY CO., LTD
发明人: Changhe Li , Qingan Yin , Yanbin Zhang , Huajun Cao , Zhenjing Duan , Cong Mao , Wenfeng Ding , Naiqing Zhang , Lan Dong , Xiufang Bai , Menghua Sui , Yonghong Liu , Wentao Wu , Teng Gao , Min Yang , Dongzhou Jia , Runze Li , Yali Hou
CPC分类号: B23Q3/15503 , B23C1/06 , B23Q3/15713 , B23Q3/15722 , B23Q11/1046 , B23Q15/12 , B23Q17/0957 , B23Q17/0966 , Y10T409/304032 , Y10T483/10 , Y10T483/1755
摘要: The disclosure provides a milling system and method under different lubrication conditions. The system uses a tool to mill the workpiece, a force measuring system to measure the milling force, a tool change system to replace the tools, a tool storage to store the tools. It can store the tools, provide the lubricating oil to the milling surface, select different tools according to different processing conditions, select the best angle differences of the unequal spiral angle tools according to different conditions comprising dry cutting, casting-type lubrication, minimal quantities of lubrication or minimal quantities of nanofluid lubrication, and/or choose the optimal tool according to different cutting parameters in order to obtain the minimum milling force.
-
37.
公开(公告)号:US11707807B2
公开(公告)日:2023-07-25
申请号:US17829602
申请日:2022-06-01
发明人: Changhe Li , Zhuang Shi , Bo Liu , Huajun Cao , Wenfeng Ding , Xin Cui , Zafar Said , Yanbin Zhang
IPC分类号: B23K37/04 , B23K101/00 , B23K37/00
CPC分类号: B23K37/0452 , B23K37/0426 , B23K37/0435 , B23K37/00 , B23K2101/006 , Y02T30/00
摘要: Provided is a fixture for automatic assembly, overturning and welding of sidewall aluminum profile of a rail vehicle, comprising a lifting mechanism, a supporting overturning device mounted on the lifting mechanism, an automatic assembling sidewall profile device mounted on the supporting overturning device, and a self-positioning locking device. The automatic assembling sidewall profile device comprises a sidewall-shaped support steel beam, and a rodless cylinder track platform and a fixing seat. The self-positioning locking devices are mounted on the rodless cylinder track platform and the fixing seat, and have a self-positioning base and a locking device. The self-positioning base comprises an outer housing is provided with the locking device and two symmetrically set self-positioning supports, and faces of the two self-positioning supports matching with the rail vehicle aluminum profile are provided with rollers having a V-shaped gap formed therebetween.
-
38.
公开(公告)号:US11633876B2
公开(公告)日:2023-04-25
申请号:US17279040
申请日:2020-02-06
发明人: Changhe Li , Baoteng Huang , Han Zhai , Bingheng Lu , Huajun Cao , Zhen Wang , Qidong Wu , Yanbin Zhang , Min Yang , Yali Hou , Mingzheng Liu , Xin Cui
摘要: A slurry scraping mechanism and an applying and scraping device used in an SG abrasive production process includes a scraping master support; a scraper, wherein the scraper is connected with the scraping master support through a suspension component such that the scraper is suspended, and a damping spring is arranged in the suspension component; and a torsion spring adjusting component, wherein the torsion spring adjusting component includes a plurality of torsion springs supported by a torsion spring support shaft, the torsion spring support shaft is fixed to the scraping master support, the torsion spring support shaft is movable up and down relative to the scraping master support, the torsion springs are clamped in a V-shaped plate, an end side of the V-shaped plate is connected with the scraping master support, and a side surface of the V-shaped plate is connected with the scraper.
-
公开(公告)号:US11571222B2
公开(公告)日:2023-02-07
申请号:US16098277
申请日:2018-02-02
发明人: Changhe Li , Min Yang , Yiliang Yang , Yali Hou , Dongzhou Jia , Yanbin Zhang , Xiaowei Zhang
摘要: A neurosurgical ultrasonic focusing assisted three-stage atomization cooling and postoperative wound film forming device has a transducer housing and a nozzle, wherein a horn is arranged in the transducer housing, at least two layers of piezoelectric ceramic sheets are arranged at the top of the horn, an electrode sheet connected with an ultrasonic generator is arranged between two adjacent layers of piezoelectric ceramic sheets, the bottom of the transducer housing is of a hemispherical structure, and a plurality of piezoelectric elements connected with the ultrasonic generator are arranged inside the hemispherical structure; and the nozzle is arranged at the bottom of the horn and connected with a medical nanofluid storage cup, compressed gas can also be introduced into the nozzle, and an electrode is also arranged inside the nozzle.
-
40.
公开(公告)号:US11047818B2
公开(公告)日:2021-06-29
申请号:US16672540
申请日:2019-11-04
发明人: Changhe Li , Min Yang , Runze Li , Yanbin Zhang , Xianpeng Zhang , Heju Ji , Yali Hou , Naiqing Zhang , Qidong Wu
摘要: The present invention discloses an integrated online measurement system for thermophysical property parameters of nanofluid cutting fluid, consisting of a gas path system, a fluid path system, a nanofluid thermal conductivity measurement device, a measurement device for a convective heat transfer coefficient and a nanofluid/workpiece heat partition ratio of the nanofluid cutting fluid, and a grinding force and grinding temperature measurement device or a milling force and milling temperature measurement device; the nanofluid thermal conductivity measurement device is located in the fluid path system; the gas path system provides pressure for the nanofluid in the fluid path system, two nozzles lead out from the fluid path system, and the nanofluid gas spray ejected by the nozzle I is sprayed onto the surface of a workpiece I to form the measurement device for the nanofluid convective heat transfer coefficient and the nanofluid/workpiece heat partition ratio; and the nanofluid gas spray ejected by the nozzle II is sprayed onto the surface of a workpiece II to form the grinding force and grinding temperature measurement device.
-
-
-
-
-
-
-
-
-