Abstract:
A dielectric gel for use in electro-discharge machining. Aspects of the dielectric gel include a liquid solvent phase entrapped in a three-dimensionally cross-linked fibre network.
Abstract:
A method of forming a diffusion bonded joint comprises the steps of: providing a first component having a first faying surface; providing a second component having a second faying surface; applying a lamellar coating to at least one of the first faying surface and the second faying surface; and bringing the first and second faying surfaces into contact in a diffusion bonding operation to form the diffusion bonded joint.
Abstract:
A method and apparatus for applying a cladding layer to a surface of a component uses a cladding tool having a maximum reach less than the size of the surface. Geometry of the surface is segmented into a plurality of tessellated segments, each of which has a peripheral extent determined by a maximum reach of the cladding tool. A nominal tool subpath for each tessellated segment is generated, and then combined to generate a nominal tool path for depositing the cladding layer on the surface. The surface is clad using the nominal toolpath, including a process of adjusting the nominal tool path to an adjusted tool path that accounts for dimensions of the bead to be deposited by the tool to match an edge of the bead to be deposited with an edge of a previously deposited bead.
Abstract:
A method of manufacturing a part comprises providing a component for cutting and directing a water jet at the component so as to cut the component. The water jet comprises water and abrasive particles having a nucleus made from a first substance and a second substance surrounding the nucleus, the first substance being denser than the second substance.
Abstract:
A method of welding a first component and a second component together, the method comprising: controlling movement of a first component and/or a second component to form a joint, the first component and the second component defining a first side and a second side; controlling welding of the first component and the second component on the second side using filler to form a seal weld to seal the joint; controlling provision of a vacuum chamber to enclose the joint within a volume; controlling evacuation of the volume defined by the vacuum chamber; and controlling power beam welding of the joint, the power beam being provided from the first side and through the evacuated volume.
Abstract:
A method of controlling a working gap between one or more cathodic tools and an anodic workpiece in an electrochemical material dissolution process, the method comprising: providing a cathodic tool and an anodic workpiece defining a working gap therebetween, the cathodic tool and the workpiece being at least partially immersed in a conductive electrolyte solution; providing a negative electrical potential to the cathodic tool; monitoring one or more of the electrical potential, current, current density and charge between the cathodic tool and the anode to determine the working gap between the cathodic tool and the anode; and, controlling one or more process parameters to maintain one or more of the working gap and electrochemical working conditions between the cathodic tool and anodic workpiece at a targeted value.
Abstract:
An apparatus for manufacturing an article from powder material includes a canister, a sorter, a plurality of hoppers and at least one valve. The canister has a predetermined internal shape to define the shape of the powder metal article. The sorter sorts the powder material by the size of the powder particles, the shape of the powder particles and/or the flow characteristics of the powder particles. The hoppers contain powder material with different sizes of powder particles, different shapes of powder particles and/or powder particles with different flow characteristics. The hoppers are arranged to supply the sorted powder material to the canister. The at least one valve controls the proportions of the different powder materials supplied from the one or more of the different hoppers into the canister to control the packing density of the powder material in the canister at all positions in the canister.
Abstract:
A method of machining an object, the method comprising: receiving a signal from an ultrasonic transducer; determining at least a first external surface of the object and a second internal surface of the object in the received signal; determining a thickness between the first external surface and the second internal surface of the object, the object comprising a first material between the first external surface and the second internal surface, and a second material between the second internal surface and a third surface, the determination of the thickness using a database including a plurality of materials and a plurality of associated acoustic wave velocities; and controlling machining of the first external surface using the determined thickness.
Abstract:
A method of machining a nickel containing alloy gas turbine engine component (34) comprises applying a material removal gas comprising gaseous carbon monoxide at a nickel carbonyl gas forming temperature such as 50 to 60° C. to a surface of the component to form a nickel carbonyl gas, and thereby remove a surface layer from at least part of the component.
Abstract:
A method of manufacturing an article by hot pressing and ultrasonically inspecting the article comprises forming and filling a canister with powder material and evacuating and sealing the canister. Heat and pressure are applied to the canister to consolidate the powder material to form the article. The article within the canister is ultrasonically inspected by moving a transducer over the whole of the canister. The position of an interface between the article and the canister, and the thickness of the canister, at each position on the surface of the canister and if there are defects within the article are determined. The canister is then removed from the article by machining the canister using a machining tool, the movement of the tool is controlled such that at each position of the canister the tool removes the determined thickness of the canister for the corresponding position on the surface of the canister.