摘要:
In one embodiment, the disclosure relates to a single flux quantum (SFQ) signal transmission line powered by an AC power source. The AC power source supplies power to a transformer having a primary winding and a secondary winding. The primary winding receives the AC signal and the secondary winding communicates the signal to the SFQ transmission line. The transmission line can optionally include an input filter circuit for receiving the incoming SFQ pulse. The filter circuit can have a resistor and an inductor connected in parallel. In an alternative arrangement, the filter circuit can comprise of an inductor. A first Josephson junction can be connected to the filter circuit and to the secondary winding. The Josephson junction triggers in response to the incoming SFQ pulse and regenerates a pulse signal in response to a power discharge from the secondary winding.
摘要:
A clock recovery circuit (10) for a superconductor system that enables the phase of a system clock to be instantaneously reset without any pulse interaction. The clock recovery circuit (10) includes a Josephson transmission line oscillator loop (14) of length 2T, where T is equal to one clock period. First and second data inputs (16, 18) are for injecting a data pulse onto the oscillator loop (14). A pulse generator (24) is for injecting an initial clock pulse onto the oscillator loop (14) that is output as periodic clock signals. An output tap (12) is for outputting the data pulse from one of the first and second data inputs (16, 18), and the periodic clock signals in the absence of the data pulse. When the data pulse is input on one of first and second output taps (32, 34), the clock phase is instantaneously reset.
摘要:
A superconductor memory array (10) has a high associated throughput with low power dissipation and a simple architecture. The superconductor memory array (10) includes memory cells (12a-12d) arranged in a row-column format and each including a storage loop (14a-14d) with a Josephson junction (16a-16d) for storing a binary value. Row address lines (24a, 24b) each are magnetically coupled in series to a row of the memory cells (12a-12d), and column address lines (26a, 26b) each are connected in series to a column of the memory cells (12a-12d). A sense amplifier (38a, 38b) is located on each of the column address lines (26a, 26b) for sensing state changes in the memory cells (12a-12d) located in the columns during a READ operation initiated by row address line READ signals.
摘要:
The self inductance associated with a capacitance A52 in a superconductor integrated circuit (FIG. 1) is reduced by adding a layer of superconductor metal (A54) overlying the capacitor, effectively producing a negative inductance to counteract the self-inductance of the capacitor leads, thereby reducing inductance of the circuit. As a result it possible to transfer a single flux quantum (“SFQ”) pulse through the capacitor. Capacitors (19 and 25 FIG. 5) of the foregoing type are incorporated in superconductor integrated circuit SFQ transmission lines (FIG. 5) to permit SQUID-to-SQUID transfer of SFQ pulses, while maintaining the circuit grounds of the respective SQUIDs in DC isolation. Bias current (10) may be supplied to multiple SQUIDs (1 & 3, 7 & 9 FIG. 5) serially, reducing the supply current required previously for operation of multiple SQUIDs.
摘要:
A superconducting A/D converter (10) has an error correction system (70) for eliminating non-linearities in a primary quantizer (30). The converter (10) includes a primary quantizer (30), a primary SFQ counter (50), and the error correction system (70). The primary quantizer (30) generates primary SFQ pulses based on an average voltage of an analog input signal. The primary SFQ counter (50) converts the primary SFQ pulses into a digital output signal based on a frequency of the primary SFQ pulses. The error correction system (70) corrects the digital output signal based on the analog input signal and the primary SFQ pulses. Using the primary SFQ pulses to correct the digital output signal allows the converter (10) to take into account the non-linearities of the primary quantizer (30).
摘要:
Superconducting integrated circuit layouts are proofed against the detrimental effects of stray flux by designing and fabricating them to have one or more ground planes patterned in the x-y plane with a regular grid of low-aspect-ratio flux-trapping voids. The ground plane(s) can be globally patterned with such voids and thousands or more superconducting circuit devices and wires can thereafter be laid out so as not to intersect or come so close to the voids that the trapped flux would induce supercurrents in them, thus preventing undesirable coupling of flux into circuit elements. Sandwiching a wire layer between patterned ground planes permits wires to be laid out even closer to the voids. Voids of successively smaller maximum dimension can be concentrically stacked in pyramidal fashion in multiple ground plane layers having different superconductor transition temperatures, increasing the x-y area available for device placement and wire-up.
摘要:
One embodiment includes a superconductive gate system. The superconductive gate system includes a Josephson D-gate circuit comprising a bi-stable loop configured to store a digital state as one of a first data state and a second data state in response to an enable single flux quantum (SFQ) pulse provided on an enable input and a respective presence of or absence of a data SFQ pulse provided on a data input. The digital state can be provided at an output. The readout circuit is coupled to the output and can be configured to reproduce the digital state as an output signal.
摘要:
One aspect of the present invention includes a Josephson magnetic random access memory (JMRAM) system. The system includes an array of memory cells arranged in rows and columns. Each of the memory cells includes an HMJJD that is configured to store a digital state corresponding to one of a binary logic-1 state and a binary logic-0 state in response to a word-write current that is provided on a word-write line and a bit-write current that is provided on a bit-write line. The HMJJD is also configured to output the respective digital state in response to a word-read current that is provided on a word-read line and a bit-read current that is provided on a bit-read line.
摘要:
The disclosure generally relates to a method and apparatus for providing high-speed, low signal power amplification. In an exemplary embodiment, the disclosure relates to a method for providing a wideband amplification of a signal by forming a first transmission line in parallel with a second transmission line, each of the first transmission line and the second transmission line having a plurality of superconducting transmission elements, each transmission line having a transmission line delay; interposing a plurality of amplification stages between the first transmission line and the second transmission line, each amplification stage having an resonant circuit with a resonant circuit delay; and substantially matching the resonant circuit delay for at least one of the plurality of amplification stages with the transmission line delay of at least one of the superconducting transmission lines.
摘要:
A second order superconductor delta-sigma analog-to-digital modulator having an input for receiving an analog signal, a first integrator coupled to the input, a second integrator cascaded with the first integrator, and a quantum comparator digitizing output from the second integrator reduces quantization noise by providing matched quantum accurate DACs in a feedback loop between output from the quantum comparator and input to the first integrator. The matched quantum accurate feedback DACs produce identically repeatable voltage pulses, may be configured for multi-bit output, may be time-interleaved to permit higher clocking rates, and may be employed in a balanced bipolar configuration to allow inductive input coupling. Bipolar feedback is balanced when gain of a first DAC exceeds gain of a matched, opposite polarity DAC by the amount of implicit feedback from the comparator into the second integrator.