Abstract:
Methods, apparatuses, computer program products, devices and systems are described that include accepting one or more blood vessel sleeve dimensions based on blood vessel data from an individual; and making a rapid-prototyped blood vessel sleeve at least partly based on the one or more blood vessel sleeve dimensions.
Abstract:
Embodiments include an apparatus, a medical device, a method and a system. The medical device includes an ellipsoidally shaped reflector having a first focus and a second focus. The ellipsoidally shaped reflector also provides a translational coupling of electromagnetic energy from the first focus to the second focus. The medical device also includes a controllable electromagnetic energy source aligned to emit a non-biologically emitted electromagnetic energy in a proximity to the first focus.
Abstract:
Bone cages are disclosed including devices for biocompatible implantation. The structures of bone are useful for providing living cells and tissues as well as biologically active molecules to subjects.
Abstract:
Lumen-traveling biological interface devices and associated methods and systems are described. Lumen-traveling biological interface devices capable of traveling within a body lumen may include a propelling mechanism to produce movement of the lumen-traveling device within the lumen, electrodes or other electromagnetic transducers for detecting biological signals and electrodes, coils or other electromagnetic transducers for delivering electromagnetic stimuli to stimulus responsive tissues. Lumen-traveling biological interface devices may also include additional components such as sensors, an active portion, and/or control circuitry.
Abstract:
Lumen-traveling devices capable of controlled material release and associated methods and systems are described. Lumen-traveling devices capable of traveling within a body lumen may include a propelling mechanism to produce movement of the lumen-traveling device within the lumen, as well as additional components such as a sensor, a material release portion, and/or control circuitry. In some embodiments, a sensor may be used to detect a local condition, and a material may be released from the device in response.
Abstract:
An element for interacting with electromagnetic radiation is disclosed, including a first self-resonant body, a second self-resonant body, and a directional device interposed between the first self-resonant body and the second self-resonant body. The directional device is adapted to inhibit propagation of electromagnetic radiation from the second self-resonant body to the first self-resonant body.
Abstract:
Embodiments of devices and system for controllable nasal delivery of materials are described. Methods of use of such devices and system and software for controlling the operation of such devices and systems are also disclosed.