摘要:
A manufacturing method provides a semiconductor device with a substrate layer and an epitaxial layer adjoining the substrate layer. The epitaxial layer includes first columns and second columns of different conductivity types. The first and second columns extend along a main crystal direction along which channeling of implanted ions occurs from a first surface into the epitaxial layer. A vertical dopant profile of one of the first and second columns includes first portions separated by second portions. In the first portions a dopant concentration varies by at most 30%. In the second portions the dopant concentration is lower than in the first portions. The ratio of a total length of the first portions to the total length of the first and second portions is at least 50%. The uniform dopant profiles improve device characteristics.
摘要:
A method for producing a semiconductor device with an electrode structure includes providing a semiconductor body with a first surface, and with a first sacrificial layer extending in a vertical direction of the semiconductor body from the first surface, and forming a first trench extending from the first surface into the semiconductor body. The first trench is formed at least by removing the sacrificial layer in a section adjacent to the first surface. The method further includes forming a second trench by isotropically etching the semiconductor body in the first trench, forming a dielectric layer which covers sidewalls of the second trench, and forming an electrode on the dielectric layer in the second trench, the electrode and the dielectric layer in the second trench forming the electrode structure.
摘要:
A semiconductor device with a dielectric layer is produced by providing a semiconductor body with a first trench extending into the semiconductor body, the first trench having a bottom and a sidewall. A first dielectric layer is formed on the sidewall in a lower portion of the first trench and a first plug is formed in the lower portion of the first trench so as to cover the first dielectric layer. The first plug leaves an upper portion of the sidewall uncovered. A sacrificial layer is formed on the sidewall in the upper portion of the first trench and a second plug is formed in the upper portion of the first trench. The sacrificial layer is removed so as to form a second trench having sidewalls and a bottom. A second dielectric layer is formed in the second trench and extends to the first dielectric layer.
摘要:
A method for producing a semiconductor device with an electrode structure includes providing a semiconductor body with a first surface, and with a first sacrificial layer extending in a vertical direction of the semiconductor body from the first surface, and forming a first trench extending from the first surface into the semiconductor body. The first trench is formed at least by removing the sacrificial layer in a section adjacent to the first surface. The method further includes forming a second trench by isotropically etching the semiconductor body in the first trench, forming a dielectric layer which covers sidewalls of the second trench, and forming an electrode on the dielectric layer in the second trench, the electrode and the dielectric layer in the second trench forming the electrode structure.
摘要:
In a method of making a semiconductor device, a first gate stack is formed on a substrate at a pFET region, which includes a first gate electrode material. The source/drain regions of the substrate are etched at the pFET region and the first gate electrode material of the first gate stack is etched at the pFET region. The etching is at least partially selective against etching oxide and/or nitride materials so that the nFET region is shielded by a nitride layer (and/or a first oxide layer) and so that the spacer structure of the pFET region at least partially remains. Source/drain recesses are formed and at least part of the first gate electrode material is removed by the etching to form a gate electrode recess at the pFET region. A SiGe material is epitaxially grown in the source/drain recesses and in the gate electrode recess at the pFET region. The SMT effect is achieved from the same nitride nFETs mask.
摘要:
In a method of making a semiconductor device, a first gate stack is formed on a substrate at a pFET region, which includes a first gate electrode material. The source/drain regions of the substrate are etched at the pFET region and the first gate electrode material of the first gate stack is etched at the pFET region. The etching is at least partially selective against etching oxide and/or nitride materials so that the nFET region is shielded by a nitride layer (and/or a first oxide layer) and so that the spacer structure of the pFET region at least partially remains. Source/drain recesses are formed and at least part of the first gate electrode material is removed by the etching to form a gate electrode recess at the pFET region. A SiGe material is epitaxially grown in the source/drain recesses and in the gate electrode recess at the pFET region. The SMT effect is achieved from the same nitride nFETs mask.
摘要:
To form a semiconductor device, an insulating layer is formed over a conductive region and a pattern transfer layer is formed over the insulating layer. The pattern transfer layer is patterned in the reverse tone of a layout of recesses to be formed in the insulating layer such that the pattern transfer layer remains over regions where the recesses are to be formed. A mask material is formed over the insulating layer and is aligned with the pattern transfer layer. Remaining portions of the pattern transfer layer are removed and recesses are etched in the insulating layer using the mask material as a mask.
摘要:
An embodiment of the invention provides a semiconductor fabrication method. The method comprises forming a strained channel region in semiconductor devices. Embodiments include forming a stressor layer over an amorphous portion of the semiconductor device at an intermediate stage of fabrication. The device is masked and strain in a portion of the stressor layer is relaxed. Recrystallizing the amorphous portion of the intermediate device transfers strain from the stressor to the substrate. At least a portion of the strain remains in the substrate through subsequent device fabrication, thereby improving performance of the completed device. In other embodiments, a tensile stressor layer is formed over a first portion of the device, and a compressive stressor layer is formed over a second portion. A tensile stressor layer forms a compressive channel in a PMOS device, and a compressive stressor forms a tensile channel in an NMOS device.
摘要:
Semiconductor device with a first structure comprising a plurality of at least in part parallel linear structures, a second structure comprising a plurality of pad structures, forming at least in part one of the group of linear structure, curved structure, piecewise linear structure and piecewise curved structure which is positioned at an angle to the first structure, and the plurality of pad structures are intersecting at least one of the linear structures in the first structure. An electronic device with at least one semiconductor device, methods for manufacturing a semiconductor device and a mask system are also covered.
摘要:
The top of the semiconductor body (1) has a sacrificial layer (4) made of nitride applied to it on a region, which is provided for the actuation circuit. A memory layer (6) provided for the memory cells is applied over the entire area and is removed above the sacrificial layer (4) by dry etching. The nitride in the sacrificial layer (4) can then be removed by wet chemical means without starting to etch the semiconductor material.