Abstract:
A communications device transmitting/receiving signals to/from a mobile communications network includes one or more network elements providing a wireless access interface for the communications device. The wireless access interface includes plural communications resource elements across a host frequency range of a host carrier, and a first section of the communications resources within a first frequency range for preferable allocation to reduced capability devices forming a first reduced bandwidth carrier and a second section of the communications resources within a second frequency range for preferable allocation to the reduced capability devices forming a second reduced bandwidth carrier. Each of the first and second frequency ranges is within the host frequency range. The communications device is configured with a reduced capability to receive the signals only within a frequency bandwidth less than the host frequency range and equal to at least one of the first frequency range or the second frequency range.
Abstract:
A communications device establishes a communications context for communicating data packets using a packet communications bearer from the communications device via mobile communications network in a connected state and releases communications context when in an idle state. A controller is configured in combination with a receiver to receive signalling information providing an indication of one or more functions performed by at least one of the receiver, a transmitter, or the controller which can be changed in a power saving state, and when in either the idle state or the connected state, to enter the power saving state in which the one or more of the operations performed by at least one of the receiver, the transmitter, or the controller are changed in accordance with the indication of the changed functions received in the signalling information from the mobile communications network.
Abstract:
Random access operation is performed under a communication environment in which a plurality of communication modes having different transmission rate coexist with small overhead. A high-grade communication station spoofs information of a packet length and a rate in a decoding portion so that a value of (packet length)/(rate) corresponds to a duration where the communication is hoped to be stopped. The other station receiving the spoofed information receives the rest of the packet with the designated rate during the interval designated by the value of (packet length)/(rate). In this case, the packet length and the rate are not those of actually transmitted packet so that this packet is discarded.
Abstract:
A communications device transmits/receives data to/from infrastructure equipment forming part of a communications network. The communications device includes a controller and a transceiver configured to transmit and/or receive signals representing the data to/from the infrastructure equipment. The transceiver is configured to, under control of the controller, transmit a request for services message to the infrastructure equipment, and receive a response message to the request for services message from the infrastructure equipment. The request for services message includes a delay period, and the controller is configured after transmission of the request for services message to configure the transceiver to enter a reduced power state in which an amount of power consumed by the transceiver is reduced for the delay period. The controller is also configured, after the delay period has expired, to configure the transceiver to exit the reduced power state to receive the response message from the infrastructure equipment.
Abstract:
A communications device transmitting/receiving signals to/from a mobile communications network includes one or more network elements providing a wireless access interface for the communications device. The wireless access interface includes plural communications resource elements across a host frequency range of a host carrier, and a first section of the communications resources within a first frequency range for preferable allocation to reduced capability devices forming a first virtual carrier and a second section of the communications resources within a second frequency range for preferable allocation to the reduced capability devices forming a second virtual carrier. Each of the first and second frequency ranges is within the host frequency range. The communications device is configured with a reduced capability to receive the signals only within a frequency bandwidth less than the host frequency range and equal to at least one of the first frequency range or the second frequency range.
Abstract:
To facilitate a selective transmission power boost in a narrowband subsystem of a wideband host carrier, where the narrowband subsystem is preferentially allocated to reduced capability communications devices, both data symbols and dedicated reference symbols are transmitted at a higher power within the narrowband. It is further determined whether to use the dedicated symbols exclusively or in addition to common reference symbols to generate channel estimates.
Abstract:
A wireless communication system, method and apparatus cooperate to use a wireless coordination signal from a control station in a first frequency band to establish direct links in a second frequency band between different terminals. Once established, the direct links in the second frequency band operate without further needing intervention by the control station. The first frequency band is 1 GHz or higher, and the second frequency band is at a higher frequency than the first frequency band.
Abstract:
There is provided a wireless communication apparatus serving as an access point of a wireless LAN. The wireless communication apparatus includes a wireless communication unit (110) and a controller (130). The wireless communication unit (110) receives a signal including information regarding a channel used in an OBSS (Overlap Basic Service Set). The controller (130) determines a frequency band of a channel used in a BSS (Basic Service Set) on the basis of the information regarding the channel used in the OBSS.
Abstract:
[Problem] To provide a communication device that enable performing radio communication in a more efficient manner. [Solution] A communication device includes a first communication unit that performs frame exchange with another communication device using a first channel and based on the IEEE802.11 standard; a second communication unit that performs communication of data frames with the other communication device using a second channel which has a different frequency band than the first channel; and a control unit that controls communication of the data frames based on the result of the frame exchange.
Abstract:
A communications device comprising a transmitter for transmitting signals representing device-to-device communications to a second communications device across a wireless access interface, a receiver for receiving signals representing device-to-device communication from the second communications device across the wireless access interface, the wireless access interface including a control resource for communicating control data between communications devices and a data resource for communicating user data between communications devices, the control data providing scheduling assignments for the allocation of resources of the data resource, and a controller for controlling the transmitter and the receiver to perform interference detection in one or more of the control resource and the data resource, and to transmit in the control resources, in response to detecting interference in one or more of the control resource and the data resource, signals representing an indication of the detected interference to the second communications device.