Abstract:
An insulating layer which releases a large amount of oxygen is used as an insulating layer in contact with a channel region of an oxide semiconductor layer, and an insulating layer which releases a small amount of oxygen is used as an insulating layer in contact with a source region and a drain region of the oxide semiconductor layer. By releasing oxygen from the insulating layer which releases a large amount of oxygen, oxygen deficiency in the channel region and an interface state density between the insulating layer and the channel region can be reduced, so that a highly reliable semiconductor device having small variation in electrical characteristics can be manufactured. The source region and the drain region are provided in contact with the insulating layer which releases a small amount of oxygen, thereby suppressing the increase of the resistance of the source region and the drain region.
Abstract:
By reducing the contact resistance between an oxide semiconductor film and a metal film, a transistor that uses an oxide semiconductor film and has excellent on-state characteristics is provided. A semiconductor device includes a pair of electrodes over an insulating surface; an oxide semiconductor film in contact with the pair of electrodes; a gate insulating film over the oxide semiconductor film; and a gate electrode overlapping with the oxide semiconductor film with the gate insulating film interposed therebetween. In the semiconductor device, the pair of electrodes contains a halogen element in a region in contact with the oxide semiconductor film. Further, plasma treatment in an atmosphere containing fluorine can be performed so that the pair of electrodes contains the halogen element in a region in contact with the oxide semiconductor film.
Abstract:
A semiconductor device with a large storage capacity per unit area is provided. A semiconductor device includes a memory cell. The memory cell includes a first conductor; a first insulator over the first conductor; a first oxide over the first insulator and including a first region, a second region, and a third region positioned between the first region and the second region; a second insulator over the first oxide; a second conductor over the second insulator; a third insulator positioned in contact with a side surface of the first region; and a second oxide positioned on the side surface of the first region, with the third insulator therebetween. The first region includes a region overlapping the first conductor. The third region includes a region overlapped by the second conductor. The first region and the second region have a lower resistance than the third region.
Abstract:
A semiconductor material is an oxide including a metal element and nitrogen, in which the metal element is indium (In), an element M (M is aluminum (Al), gallium (Ga), yttrium (Y), or tin (Sn)), and zinc (Zn) and nitrogen is taken into an oxygen vacancy or bonded to an atom of the metal element.
Abstract:
A semiconductor device is manufactured using a transistor in which an oxide semiconductor is included in a channel region and variation in electric characteristics due to a short-channel effect is less likely to be caused. The semiconductor device includes an oxide semiconductor film having a pair of oxynitride semiconductor regions including nitrogen and an oxide semiconductor region sandwiched between the pair of oxynitride semiconductor regions, a gate insulating film, and a gate electrode provided over the oxide semiconductor region with the gate insulating film positioned therebetween. Here, the pair of oxynitride semiconductor regions serves as a source region and a drain region of the transistor, and the oxide semiconductor region serves as the channel region of the transistor.
Abstract:
A high-performance and highly reliable semiconductor device is provided. The semiconductor device includes: a first oxide; a source electrode; a drain electrode; a second oxide over the first oxide, the source electrode, and the drain electrode; a gate insulating film over the second oxide; and a gate electrode over the gate insulating film. The source electrode is electrically connected to the first oxide. The drain electrode is electrically connected to the first oxide. Each of the first oxide and the second oxide includes In, an element M (M is Al, Ga, Y, or Sn), and Zn. Each of the first oxide and the second oxide includes more In atoms than element M atoms. An atomic ratio of the In, the Zn, and the element M in the first oxide is equal to or similar to an atomic ratio of the In, the Zn, and the element M in the second oxide.
Abstract:
A highly reliable semiconductor device suitable for miniaturization and high integration is provided. The semiconductor device includes a first insulator; a transistor over the first insulator; a second insulator over the transistor; a first conductor embedded in an opening in the second insulator; a barrier layer over the first conductor; a third insulator over the second insulator and over the barrier layer; and a second conductor over the third insulator. The first insulator, the third insulator, and the barrier layer have a barrier property against oxygen and hydrogen. The second insulator includes an excess-oxygen region. The transistor includes an oxide semiconductor. The barrier layer, the third insulator, and the second conductor function as a capacitor.
Abstract:
[Problem] To provide a semiconductor device suitable for miniaturization. To provide a highly reliable semiconductor device. To provide a semiconductor device with improved operating speed.[Solving Means] A semiconductor device including a memory cell including first to cth (c is a natural number of 2 or more) sub memory cells, wherein: the jth sub memory cell includes a first transistor, a second transistor, and a capacitor; a first semiconductor layer included in the first transistor and a second semiconductor layer included in the second transistor include an oxide semiconductor; one of terminals of the capacitor is electrically connected to a gate electrode included in the second transistor; the gate electrode included in the second transistor is electrically connected to one of a source electrode and a drain electrode which are included in the first transistor; and when j≥2, the jth sub memory cell is arranged over the j−1th sub memory cell.
Abstract:
A high-performance semiconductor device with high reliability is provided. The semiconductor device includes a first transistor, a second transistor, a first metal oxide covering at least part of the first transistor, an insulating film over the first transistor and the second transistor, and a second metal oxide over the insulating film. The first transistor includes a first gate electrode, a first gate insulating film, a first oxide, a first source electrode, a first drain electrode, a second gate insulating film, and a second gate electrode. The second transistor includes a third gate electrode, a third gate insulating film, a second oxide, a second source electrode, a second drain electrode, a fourth gate insulating film, and a fourth gate electrode. The first gate insulating film and the second gate insulating film are in contact with the first metal oxide.
Abstract:
An object is to provide a semiconductor device including an oxynitride semiconductor whose carrier density is controlled. By introducing controlled nitrogen into an oxide semiconductor layer, a transistor in which an oxynitride semiconductor having desired carrier density and on characteristics is used for a channel can be manufactured. Further, with the use of the oxynitride semiconductor, even when a low resistance layer or the like is not provided between an oxynitride semiconductor layer and a source electrode and between the oxynitride semiconductor layer and a drain electrode, favorable contact characteristics can be exhibited.