摘要:
In formation of a source/drain region of an NMOS transistor, a gate-directional extension region of an N+ block region in an N+ block resist film prevents a well region located under the gate-directional extension region from implantation of an N-type impurity. A high resistance forming region, which is the well region having a possibility for implantation of an N-type impurity on a longitudinal extension of a gate electrode , can be formed as a high resistance forming region narrower than a conventional high resistance forming region . Thus, a semiconductor device having a partially isolated body fixed SOI structure capable of reducing body resistance and a method of manufacturing the same are obtained.
摘要:
It is an object to provide an SOI device capable of carrying out body fixation and implementing a quick and stable operation. A gate insulating film (11) having a thickness of 1 to 5 nm is provided between a portion other than a gate contact pad (GP) of a gate electrode (12) and an SOI layer (3), and a gate insulating film (110) having a thickness of 5 to 15 nm is provided between the gate contact pad (GP) and the SOI layer (3). The gate insulating film (11) and the gate insulating film (110) are provided continuously.
摘要:
In semiconductor devices in which both NMOS devices and PMOS devices are used to perform in different modes such as analog and digital modes, stress engineering is selectively applied to particular devices depending on their required operational modes. That is, the appropriate mechanical stress, i.e., tensile or compressive, can be applied to and/or removed from devices, i.e., NMOS and/or PMOS devices, based not only on their conductivity type, i.e., n-type or p-type, but also on their intended operational application, for example, analog/digital, low-voltage/high-voltage, high-speed/low-speed, noise-sensitive/noise-insensitive, etc. The result is that performance of individual devices is optimized based on the mode in which they operate. For example, mechanical stress can be applied to devices that operate in high-speed digital settings, while devices that operate in analog or RF signal settings, in which electrical noise such as flicker noise that may be introduced by applied stress may degrade performance, have no stress applied.
摘要:
It is an object to obtain a semiconductor device including a capacitance having a great Q-value. In an SOI substrate comprising a support substrate (165), a buried oxide film (166) and an SOI layer (171), an isolating oxide film 167 (167a to 167c) is selectively formed in an upper layer portion of the SOI layer (171) with a part of the SOI layer (171) remaining as a P− well region (169). Consequently, an isolation (partial isolation) structure is obtained. An N+ diffusion region (168) is formed in the SOI layer (171) between the isolating oxide films (167a) and (167b) and a P+ diffusion region (170) is formed in the SOI layer (171) between the isolating oxide films (167b) and (167c). Consequently, there is obtained a junction type variable capacitance (C23) having a PN junction surface of the P− well region (169) provided under the isolating oxide film (167b) and the N+ diffusion region (168).
摘要:
In a gate array, a gate length is measured by dividing gate electrodes into groups according to their materials to distinguish between those groups. The shape of a contact pad portion (5) of a gate electrode (4) differs according to the groups. A difference described here appears as shape such as cutouts (6a-6c) or projections (6d-6f), which is distinguishable by a scanning electron microscope, for example.
摘要:
A semiconductor device having an SOI structure capable of effectively preventing diffusion of an impurity from a source/drain region on an endmost portion of a silicon layer under a gate electrode is disclosed. In this semiconductor device, nitrogen is introduced into at least either a source/drain region or an end portion of a semiconductor layer located under a gate electrode, and the concentration profile of the nitrogen has a first concentration peak at least in either one of an endmost portion of the source/drain region in the direction where the gate electrode extends and an endmost portion of the semiconductor layer located under the gate electrode. Due to this concentration profile of nitrogen, point defects or the like serving as mediation for diffusion of an impurity are trapped, whereby diffusion of the impurity from the source/drain region is inhibited as a result. Thus, generation of an abnormal leakage current or the like is prevented.
摘要:
An SOI layer is provided in a buried oxide film and a source and a drain are provided on the upper surface of the SOI layer so that they are kept from contact with the buried oxide film. A depletion layer formed by the source, the drain, and the SOI layer extends to reach the buried oxide film, so parasitic capacitance is reduced. This structure achieves an SOIMOS transistor capable of reducing junction capacitance at low drain voltage.
摘要:
A semiconductor device comprises a silicon region (1) of the first conductivity type, a porous silicon layer (2) formed inside the silicon region (1) as a buried layer and a source region (3a) and a drain region (4a) of the second conductivity type different from the first conductivity type selectively formed in an upper surface of the silicon region (1). Bottom surfaces of the source region (3a) and the drain region (4a) are located adjacently above an upper surface of the porous silicon layer (2). As a result, depletion layers (8) in pn junctions between the silicon region (1) and the bottom surfaces of the source region (3a) and the drain region (4a) reach the inside of the porous silicon layer (2). With this structure, a semiconductor device which achieves a faster operation and lower power consumption while ensuring stability in operation of a MOSFET and a method of manufacturing the same are provided.
摘要:
In a gate array, a gate length is measured by dividing gate electrodes into groups according to their materials to distinguish between those groups. The shape of a contact pad portion (5) of a gate electrode (4) differs according to the groups. A difference described here appears as shape such as cutouts (6a-6c) or projections (6d-6f), which is distinguishable by a scanning electron microscope, for example.
摘要:
A semiconductor device and a method of manufacturing the same are provided with a silicon region of a first conductivity type, a silicon layer including at least one cavity existing inside the silicon region as a buried layer, and a source/drain region of a second conductivity type different from the first conductivity type selectively formed directly on an upper surface of the silicon region with a bottom surface of the source/drain region located adjacent to an upper surface of the silicon layer such that a depletion layer between the silicon region and the bottom surface of the source/drain region exists inside the silicon layer. With such a structure, a semiconductor device achieves a faster operation and lower power consumption while ensuring stable operation as a MOSFET.