Abstract:
A method of fabricating a semiconductor device includes forming at least one trench from a top side of a semiconductor layer, wherein the trench is lined with a trench dielectric liner and filled by a first polysilicon layer. The surface of the trench dielectric liner is etched, wherein dips in the trench dielectric liner are formed relative to a top surface of the first polysilicon layer which results in forming a protrusion including the first polysilicon layer. The first polysilicon layer is etched to remove at least a portion of the protrusion. A second dielectric layer is formed over at least the trench after etching the first polysilicon layer. A second polysilicon layer is deposited. The second polysilicon layer is etched to remove it over the trench and provide a patterned second polysilicon layer on the top side of the semiconductor layer.
Abstract:
Semiconductor device includes MOSFET having planar cells on an epitaxial semiconductor surface of a first type providing a drain drift region. A first and second epitaxial column formed in the semiconductor surface are doped a second type. A split gate includes planar gates between the epitaxial columns including a MOS gate electrode (MOS gate) and a diode gate electrode (diode gate). A body region of the second type in the drift region abuts the epitaxial columns. A source of the first type in the body region includes a first source portion proximate to the MOS gate and a second source portion proximate to the diode gate. A vertical drift region uses the drift region below the body region to provide a drain. A connector shorts the diode gate to the second source portion to provide an integrated channel diode. The MOS gate is electrically isolated from the first source portion.
Abstract:
A semiconductor device includes a vertical drift region over a drain contact region, abutted on opposite sides by RESURF trenches. A split gate is disposed over the vertical drift region. A first portion of the split gate is a gate of an MOS transistor and is located over a body of the MOS transistor over a first side of the vertical drift region. A second portion of the split gate is a gate of a channel diode and is located over a body of the channel diode over a second, opposite, side of the vertical drift region. A source electrode is electrically coupled to a source region of the channel diode and a source region of the MOS transistor.
Abstract:
A semiconductor device includes a vertical drift region over a drain contact region, abutted on opposite sides by RESURF trenches. A split gate is disposed over the vertical drift region. A first portion of the split gate is a gate of an MOS transistor and is located over a body of the MOS transistor over a first side of the vertical drift region. A second portion of the split gate is a gate of a channel diode and is located over a body of the channel diode over a second, opposite, side of the vertical drift region. A source electrode is electrically coupled to a source region of the channel diode and a source region of the MOS transistor.
Abstract:
A semiconductor device includes a vertical drift region over a drain contact region, abutted on opposite sides by RESURF trenches. A split gate is disposed over the vertical drift region. A first portion of the split gate is a gate of an MOS transistor and is located over a body of the MOS transistor over a first side of the vertical drift region. A second portion of the split gate is a gate of a channel diode and is located over a body of the channel diode over a second, opposite, side of the vertical drift region. A source electrode is electrically coupled to a source region of the channel diode and a source region of the MOS transistor.
Abstract:
A device includes a transistor formed on a substrate. The transistor includes an n-type drain contact layer, an n-type drain layer, an oxide layer, a p-type body region, a p-type terminal region, body trenches, and terminal trenches. The n-type drain contact layer is near a bottom surface of the substrate. The n-type drain layer is positioned on the n-type drain contact layer. The oxide layer circumscribes a transistor region. The p-type body region is positioned within the transistor region. The p-type terminal region extends from under the oxide layer to an edge of the transistor region, thereby forming a contiguous junction with the p-type body region. The body trenches is within the transistor region and interleaves with the p-type body region, whereas the terminal trenches is outside the transistor region and interleaves with the p-type terminal region.
Abstract:
A device includes a transistor formed on a substrate. The transistor includes an n-type drain contact layer, an n-type drain layer, an oxide layer, a p-type body region, a p-type terminal region, body trenches, and terminal trenches. The n-type drain contact layer is near a bottom surface of the substrate. The n-type drain layer is positioned on the n-type drain contact layer. The oxide layer circumscribes a transistor region. The p-type body region is positioned within the transistor region. The p-type terminal region extends from under the oxide layer to an edge of the transistor region, thereby forming a contiguous junction with the p-type body region. The body trenches is within the transistor region and interleaves with the p-type body region, whereas the terminal trenches is outside the transistor region and interleaves with the p-type terminal region.
Abstract:
A packaged electronic system comprises a slab (210) of low-grade silicon (l-g-Si) configured as ridges (114) framing a depression of depth (112) including a recessed central area suitable to accommodate semiconductor chips and embedded electrical components, the depth at least equal to the thickness of the chips and the components, the ridge covered by system terminals (209b) connected to attachment pads in the central area; and semiconductor chips (120, 130) having a thickness and terminals on at least one of opposing chip sides, the chips terminals attached to the central area terminals so that the opposite chip side is coplanar with the system terminals on the slab ridge.
Abstract:
A packaged transistor device (100) comprises a semiconductor chip (101) including a transistor with terminals distributed on the first and the opposite second chip side; and a slab (110) of low-grade silicon (l-g-Si) configured as a ridge (111) framing a depression including a recessed central area suitable to accommodate the chip, the ridge having a first surface in a first plane and the recessed central area having a second surface in a second plane spaced from the first plane by a depth (112) at least equal to the chip thickness, the ridge covered by device terminals (120; 121) connected to attachment pads in the central area having the terminals of the first chip side attached so that the terminals (103) of the opposite second chip side are co-planar with the device terminals on the slab ridge.
Abstract:
An electronic system comprises a first chip of single-crystalline semiconductor shaped as a hexahedron and including a first electronic device embedded in a second chip of single-crystalline semiconductor shaped as a container having a slab bordered by retaining walls, and including a second electronic device. The container shaped as a slab bordered by the retaining walls and including conductive traces and terminals. The first chip is attached to the slab of second chip, forming nested chips. The first and second chips embedded in the container. The nested first and second chips are operable as an electronic system and the container is operable as the package of the system.