Abstract:
A pulse-width modulation control circuit includes a first transistor and a signal generator. The first transistor includes a first terminal coupled to a power source and a second terminal coupled to a first input of a controlled component. The signal generator includes a first node coupled to a gate of the first transistor. The signal generator is configured to receive a comparison value and a comparison criterion and to compare the comparison value to a counter value based on the comparison criterion. In response to the comparison value satisfying the comparison criterion with respect to the counter value, the signal generator is configured to send a control signal to the gate of the first transistor to generate a pulse edge of a pulse of a pulse-width modulated signal.
Abstract:
Dither circuitry includes harmonic signal generation circuitry configured generate a high order even harmonic of a base excitation signal. The dither circuitry also includes a combiner configured to generate a dithered excitation signal based on the high order even harmonic and the base excitation signal. The dither circuitry further includes an output terminal configured to output the dithered excitation signal to a sensor device.
Abstract:
Thrust reverser actuator systems are disclosed herein. An example apparatus disclosed herein includes a first controller to communicate with a first flight computer and a second flight computer of an aircraft. The example apparatus also includes a second controller to communicate with the first flight computer and the second flight computer. The example apparatus further includes a thrust reverser and a first electrical actuator coupled to the thrust reverser. The first electrical actuator is to be communicatively coupled to the first controller and the second controller. The example apparatus also includes a second electrical actuator coupled to the thrust reverser. The second electrical actuator is to be communicatively coupled to the second controller. The first electrical actuator and the second electrical actuator are to synchronously actuate the thrust reverser.
Abstract:
A method and apparatus for controlling a group of electric motors. A controller is configured to identify a group of switching frequencies for a desired signature for the group of electric motors. The controller is further configured to control switching of a current supplied to the group of electric motors with the group of switching frequencies for the desired signature identified.
Abstract:
A multi-rate system for controlling an actuator may include an incremental command limiter that receives a command from a first control system and outputs a limited incremental command; a feed-forward that receives the limited incremental command from the incremental command limiter and outputs a feed forward rate command; a first differentiator that limits the limited incremental command to a maximum allowable command; an upsampler state that outputs a current state back to the differentiator; a first summer that receives the limited incremental command and the current state from the upsampler state, and outputs an incremental position command; and a second summer that combines the incremental position command and the feed forward rate command to produce a rate error output signal.
Abstract:
Thrust reverser actuator systems are disclosed herein. An example apparatus disclosed herein includes a first controller to communicate with a first flight computer and a second flight computer of an aircraft. The example apparatus also includes a second controller to communicate with the first flight computer and the second flight computer. The example apparatus further includes a thrust reverser and a first electrical actuator coupled to the thrust reverser. The first electrical actuator is to be communicatively coupled to the first controller and the second controller. The example apparatus also includes a second electrical actuator coupled to the thrust reverser. The second electrical actuator is to be communicatively coupled to the second controller. The first electrical actuator and the second electrical actuator are to synchronously actuate the thrust reverser.
Abstract:
A method and apparatus for controlling a motor. The motor comprises windings. A switch bridge comprising a plurality of switches is configured to couple a power source to the windings. A motor controller is configured to control the plurality of switches. An undesired condition identifier is configured to identify an undesired condition when the motor is providing power to the power source, wherein the undesired condition is defined with respect to a characteristic of the power source. An undesired condition reducer is configured to reduce the undesired condition in response to identifying the undesired condition by the undesired condition identifier.
Abstract:
A method and apparatus for controlling an electric motor. A controller is configured to identify a start time for a signal based on a back electromotive force present in an electric motor during operation of the electric motor. The start time is for a position of a rotor relative to a group of coils. The controller is further configured to send the signal to the group of coils using the start time identified. An effect of the back electromotive force on the signal is reduced.