Abstract:
The present disclosure relates to a structure and method of forming a GaN film on a Si substrate that includes an additional or second high temperature (HT) AlN seed layer, introduced for reducing the tensile stress of GaN on a Si substrate. The second HT AlN seed layer is disposed over a first HT AlN seed layer, and has a low V/III ratio compared to the first HT AlN seed layer. The second HT AlN seed layer has better lattice matching between Si and GaN and this reduces the tensile stress on GaN. The additional HT AlN seed layer further acts as a capping layer and helps annihilate or terminate threading dislocations (TDs) originating from a LT AlN seed layer. The second HT AlN seed layer also helps prevent Si diffusion from the substrate to the GaN film.
Abstract:
A transistor with a multi-strained layer superlattice (SLS) structure is provided. A first strained layer superlattice (SLS) layer is arranged over a substrate. A first buffer layer is arranged over the first SLS layer and includes dopants configured to increase a resistance of the first buffer layer. A second SLS layer is arranged over the first buffer layer. A second buffer layer is arranged over the second SLS layer and includes dopants configured to increase a resistance of the second buffer layer. A channel layer is arranged over the second buffer layer. An active layer is arranged over and directly abuts the channel layer. The channel and active layers collectively define a heterojunction. A method for manufacturing the transistor is also provided.
Abstract:
The present disclosure relates to a channel layer of bi-layer of gallium nitride (GaN) within a HEMT. A first breakdown voltage layer of GaN is disposed beneath an active layer of the HEMT. A second breakdown voltage layer of GaN is disposed beneath the first breakdown voltage layer, wherein the first resistivity value is less than the second resistivity value. An increased resistivity of the second breakdown voltage layer results from an increased concentration of carbon dopants which increases the breakdown voltage in the second breakdown voltage layer, but can degrade the crystal structure. To alleviate this degradation, a crystal adaptation layer is disposed beneath the second breakdown voltage layer and configured to lattice-match to the second breakdown voltage layer of GaN. As a result, the HEMT achieves a high breakdown voltage without any associated degradation to the first breakdown voltage layer, wherein a channel of the HEMT resides.
Abstract:
The present disclosure relates to a gallium-nitride (GaN) transistor device having a composite gallium nitride layer with alternating layers of GaN and aluminum nitride (AlN). In some embodiments, the GaN transistor device has a first GaN layer disposed above a semiconductor substrate. An AlN inter-layer is disposed on the first GaN layer. A second GaN layer is disposed on the AlN inter-layer. The AlN inter-layer allows for the thickness of the GaN layer to be increased over continuous GaN layers, mitigating bowing and cracking of the GaN substrate, while improving the breakdown voltage of the disclosed GaN device.
Abstract:
The present disclosure relates to an integrated chip. The integrated chip includes a substrate having a first semiconductor material. A second semiconductor material is disposed on the first semiconductor material. The second semiconductor material is a group IV semiconductor or a group III-V compound semiconductor. A passivation layer is disposed on the second semiconductor material. The passivation layer includes the first semiconductor material. A first doped region and a second doped region extend through the passivation layer and into the second semiconductor material.
Abstract:
The present disclosure relates to a gallium-nitride (GaN) transistor device having a composite gallium nitride layer with alternating layers of GaN and aluminum nitride (AlN). In some embodiments, the GaN transistor device has a first GaN layer disposed above a semiconductor substrate. An AlN inter-layer is disposed on the first GaN layer. A second GaN layer is disposed on the AlN inter-layer. The AlN inter-layer allows for the thickness of the GaN layer to be increased over continuous GaN layers, mitigating bowing and cracking of the GaN substrate, while improving the breakdown voltage of the disclosed GaN device.