摘要:
A method of fabricating a conductive metal oxide gate ferroelectric memory transistor includes forming an oxide layer a substrate and removing the oxide layer in a gate area; depositing a conductive metal oxide layer on the oxide layer and on the exposed gate area; depositing a titanium layer on the metal oxide layer; patterning and etching the titanium layer and the metal oxide layer to remove the titanium layer and the metal oxide layer from the substrate except in the gate area; depositing, patterning and etching an oxide layer to form a gate trench; depositing and etching a barrier insulator layer to form a sidewall barrier in the gate trench; removing the titanium layer from the gate area; depositing, smoothing and annealing a ferroelectric layer in the gate trench; depositing, patterning and etching a top electrode; and completing the conductive metal oxide gate ferroelectric memory transistor.
摘要:
A nanotip electroluminescence (EL) diode and a method are provided for fabricating said device. The method comprises: forming a plurality of Si nanotip diodes; forming a phosphor layer overlying the nanotip diode; and, forming a top electrode overlying the phosphor layer. The nanotip diodes are formed by: forming a Si substrate with a top surface; forming a Si p-well; forming an n+ layer of Si, having a thickness in the range of 30 to 300 nanometers (nm) overlying the Si p-well; forming a reactive ion etching (RIE)-induced polymer grass overlying the substrate top surface; using the RIE-induced polymer grass as a mask, etching areas of the substrate not covered by the mask; and, forming the nanotip diodes in areas of the substrate covered by the mask.
摘要:
A method for forming a high-luminescence Si electroluminescence (EL) phosphor is provided, with an EL device made from the Si phosphor. The method comprises: depositing a silicon-rich oxide (SRO) film, with Si nanocrystals, having a refractive index in the range of 1.5 to 2.1, and a porosity in the range of 5 to 20%; and, post-annealing the SRO film in an oxygen atmosphere. DC-sputtering or PECVD processes can be used to deposit the SRO film. In one aspect the method further comprises: HF buffered oxide etching (BOE) the SRO film; and, re-oxidizing the SRO film, to form a SiO2 layer around the Si nanocrystals in the SRO film. In one aspect, the SRO film is re-oxidized by annealing in an oxygen atmosphere. In this manner, a layer of SiO2 is formed around the Si nanocrystals having a thickness in the range of 1 to 5 nanometers (nm).
摘要:
A method is provided for forming a rare earth (RE) element-doped silicon (Si) oxide film with nanocrystalline (nc) Si particles. The method comprises: providing a first target of Si, embedded with a first rare earth element; providing a second target of Si; co-sputtering the first and second targets; forming a Si-rich Si oxide (SRSO) film on a substrate, doped with the first rare earth element; and, annealing the rare earth element-doped SRSO film. The first target is doped with a rare earth element such as erbium (Er), ytterbium (Yb), cerium (Ce), praseodymium (Pr), or terbium (Tb). The sputtering power is in the range of about 75 to 300 watts (W). Different sputtering powers are applied to the two targets. Also, deposition can be controlled by varying the effective areas of the two targets. For example, one of the targets can be partially covered.
摘要:
A method of fabricating and programming a ferroelectric memory transistor for asymmetrical programming includes fabricating a ferroelectric memory transistor having a metal oxide layer overlaying a gate region; and programming the ferroelectric memory transistor so that a low threshold voltage is about equal to the intrinsic threshold voltage of the ferrorelectric memory transistor.
摘要:
A superlattice nanocrystal Si—SiO2 electroluminescence (EL) device and fabrication method have been provided. The method comprises: providing a Si substrate; forming an initial SiO2 layer overlying the Si substrate; forming an initial polysilicon layer overlying the initial SiO2 layer; forming SiO2 layer overlying the initial polysilicon layer; repeating the polysilicon and SiO2 layer formation, forming a superlattice; doping the superlattice with a rare earth element; depositing an electrode overlying the doped superlattice; and, forming an EL device. In one aspect, the polysilicon layers are formed by using a chemical vapor deposition (CVD) process to deposit an amorphous silicon layer, and annealing. Alternately, a DC-sputtering process deposits each amorphous silicon layer, and following the forming of the superlattice, polysilicon is formed by annealing the amorphous silicon layers. Silicon dioxide can be formed by either thermal annealing or by deposition using a DC-sputtering process.
摘要:
A dry etch process is described for selectively etching silicon nitride from conductive oxide material for use in a semiconductor fabrication process. Adding an oxidant in the etch gas mixture could increase the etch rate for the silicon nitride while reducing the etch rate for the conductive oxide, resulting in improving etch selectivity. The disclosed selective etch process is well suited for ferroelectric memory device fabrication using conductive oxide/ferroelectric interface having silicon nitride as the encapsulated material for the ferroelectric.
摘要:
An MFIS memory array having a plurality of MFIS memory transistors with a word line connecting a plurality of MFIS memory transistor gates, wherein all MFIS memory transistors connected to a common word line have a common source, each transistor drain serves as a bit output, and all MFIS channels along a word line are separated by a P+ region and are further joined to a P+ substrate region on an SOI substrate by a P+ region is provided. Also provided are methods of making an MFIS memory array on an SOI substrate; methods of performing a block erase of one or more word lines, and methods of selectively programming a bit.
摘要:
A method of selectively depositing a ferroelectric thin film on an indium-containing substrate in a ferroelectric device includes preparing a silicon substrate; depositing an indium-containing thin film on the substrate; patterning the indium containing thin film; annealing the structure; selectively depositing a ferroelectric layer by MOCVD; annealing the structure; and completing the ferroelectric device.
摘要:
A nanotip electroluminescence (EL) diode and a method are provided for fabricating said device. The method comprises: forming a plurality of Si nanotip diodes; forming a phosphor layer overlying the nanotip diode; and, forming a top electrode overlying the phosphor layer. The nanotip diodes are formed by: forming a Si substrate with a top surface; forming a Si p-well; forming an n+ layer of Si, having a thickness in the range of 30 to 300 nanometers (nm) overlying the Si p-well; forming a reactive ion etching (RIE)-induced polymer grass overlying the substrate top surface; using the RIE-induced polymer grass as a mask, etching areas of the substrate not covered by the mask; and, forming the nanotip diodes in areas of the substrate covered by the mask.