摘要:
A coding device of a digital image signal coding highly efficiently a digital image signal by using a bidirectional motion compensating prediction and a DCT (digital cosine transform) transformation thereby compressing information, including inputting reference images for coding images for a bidirectional prediction to a spatial region as data and blocking the data, coding the blocked data, writing the coded data to a memory, reading reference regions for calculating a motion vector for prediction or data of the reference regions for calculating a prediction value from the memory, decoding the read data, and calculating the motion vector or means for calculating the prediction value by using the decoded data.
摘要:
A coding method and apparatus is for coding a digital video signal of interlaced type. Three-dimensional (horizontal, vertical and temporal directions) blocks are constructed for each of a plurality of picture elements, orthogonal transform is performed to each of the three-dimensional blocks and coefficients are coded. Coefficients non-effected by a pseudo-moving part are weighted with a low rate, and coefficients effected by a pseudo-moving part are weighted with high rate. After the vertical positions of picture elements of odd-number fields and those of even-number fields are coincided with each other by an intra-field picture element operation, the digital video signal is formatted and three-dimensional orthogonal transform is performed.
摘要:
To provide a coding device which does not generate a video packet having only a stuffing but can insert a minimum stuffing to prevent an underflow of a buffer in the case in which a video packet has a length limit. A minimum code volume (Tmin) is set for each VOP and a break of a video packet and an insertion of a stuffing are determined such that a code volume (Sc) of the VOP is not smaller than the minimum code volume (Tmin).
摘要:
By changing coefficients of second-order and first-order calculation terms relating to respective hues, and first-order calculation terms in the form of comparison-result data relating to respective inter-hue areas, only the target hue or inter-hue area among the six hues of red, blue, green, yellow, cyan, and magenta, and the six inter-hue areas can be varied, without affecting other hues and inter-hue areas. Thus, the six hues and six inter-hue areas can be corrected independently, and the large-capacity memory is not required.
摘要:
A color conversion device and method are provided in which six hues and inter-hue areas are corrected independently, and the conversion characteristics can be changed flexibly, and which does not require a large-capacity memory. Coefficients of second-order and first-order calculation terms relating to the respective hues, first-order calculation term using comparison-result data relating to the respective inter-hue areas, and product terms based on the comparison-result data and the hue data are changed so as to change the target hue or inter-hue area, without influencing other hues or inter-hue areas.
摘要:
In an image signal encoding method for encoding an image signal using motion compensation, a motion vector is found by means of a block matching method, a first distortion SEmc of motion compensated prediction associated with the motion vector, and a second distortion SEnomc of prediction without motion compensation are detected, the motion vector is used for for inter-picture prediction encoding when SEnomc>SEmc+K, with K being a constant greater than 0, and a vector having a value zero is used, in place of the motion vector, for inter-picture prediction encoding when SEnomc.ltoreq.SEmc+K. In another aspect, a speed of motion in a sequence of pictures is detected, and for a part of the sequence of pictures detected to contain a quick motion, the prediction encoding is performed using one-way prediction encoding, and for a part of the sequence of pictures without a quick motion, prediction encoding is performed using bi-directional prediction encoding. In another aspect, the image signal is subsampled for each field, and a motion vector is determined using the field-subsampled image signal.
摘要:
An encoding apparatus which structures a band-divided digital image signal into three-dimensional blocks each having a plurality of pixels, discriminates each three-dimensional block between a moving image block and a static image block, and, in the case of a static image block, encodes only the three-dimensional blocks in the lower frequency bands while dropping the three-dimensional blocks in the higher frequency bands. However, of moving image blocks, blocks having a large pixel variance value are encoded as effective image blocks. Also, different size weightings are performed to transform coefficients depending on whether the block is discriminated as a moving image block or a static image block. Furthermore, shuffling is performed on a group of moving image blocks and a group of static image blocks independently of each other, and the transform coefficients for the static image blocks are quantized after quantizing all transform coefficients for the moving image blocks.