摘要:
The present invention is directed to a semiconductor substrate having at least an electrode formed thereon, in which the electrode has a multilayer structure including two or more layers, of the multilayer structure, at least a first electrode layer directly bonded to the semiconductor substrate contains at least silver and a glass frit, and contains, as an additive, at least one of oxides of Ti, Bi, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Si, Al, Ge, Sn, Pb, and Zn, and, of an electrode layer formed on the first electrode layer, at least an uppermost electrode layer to be bonded to a wire contains at least silver and a glass frit and does not contain the additive. This makes it possible to form, on a semiconductor substrate, an electrode adhered to the semiconductor substrate with sufficient adhesive strength and adhered to a wire via solder with sufficient adhesive strength by lowering both contact resistance and interconnect resistance.
摘要:
The present invention is a method for manufacturing a solar cell by forming a pn junction in a semiconductor substrate having a first conductivity type to manufacture a solar cell, including at least: applying a first coating material containing a dopant onto the semiconductor substrate having the first conductivity type; and performing vapor-phase diffusion heat treatment to form a first diffusion layer in a region applied with the first coating material and a second diffusion layer, which is formed next to the first diffusion layer through vapor-phase diffusion, with a conductivity lower than a conductivity of the first diffusion layer at the same time, and provides a solar cell. Hence, it is possible to provide a method for manufacturing a solar cell, which can manufacture a solar cell at a low cost in a simple and easy way while suppressing surface recombination in a light-receiving surface other than an electrode region and recombination in an emitter to increase photoelectric conversion efficiency of the solar cell, and a solar cell.
摘要:
The present invention is a screen printing plate 1 in which at least an opening portion 2 that discharges a printing material for forming a target printing pattern 4 on a matter to be printed is provided in screen printing, and the screen printing plate is characterized in that the size of the opening portion 2 is reduced from the target printing pattern 4 and an opening end portion 3 of the opening portion 2 has a projection and recess pattern shape different from the target printing pattern shape. By this arrangement, bleeding of the printing material of the screen printing can be controlled and a high-quality and low-cost screen printing plate is provided which can print a target printing pattern accurately and with high transfer performance even for a fine design.
摘要:
An OECO solar cell using a semiconductor single crystal substrate having a plurality of grooves, wherein a minimum groove depth h of each groove always satisfies the relation of h≧W1tan θ where θ represents an angle between a line connecting the lower end, along the thickness-wise direction of the semiconductor single crystal substrate, of an electrode formed in the groove and the upper end of the inner side face of the same groove having no electrode formed thereon, and a reference line normal to the thickness-wise direction, and W1 represents a distance between both opening edges of the groove; wherein the semiconductor single crystal substrate has thickness decreasing from a first side of a first main surface to a second side opposed to the first side; and wherein the plurality of grooves have a depth distribution of being deepest at a thickest position of the substrate, and a gradually becoming shallower towards a thinnest position of the substrate.
摘要翻译:使用具有多个凹槽的半导体单晶基板的OECO太阳能电池,其中每个凹槽的最小凹槽深度h总是满足h> = W 1tanθ的关系,其中θ表示 连接沿着半导体单晶基板的厚度方向的下端,形成在槽中的电极和形成在其上的没有电极的同一槽的内侧面的上端的线,以及参考线 垂直于厚度方向,W 1 1表示槽的两个开口边缘之间的距离; 其中所述半导体单晶衬底具有从第一主表面的第一侧到与所述第一侧相对的第二侧的厚度; 并且其中所述多个凹槽具有在所述基底的最厚位置处最深的深度分布,并且朝向所述基底的最薄位置逐渐变浅。
摘要:
A solar cell (100) comprising a semiconductor solar cell substrate (66) having a light receiving surface formed on the first major surface and generating photovoltaic power based on the light impinging on the light receiving surface, wherein the light receiving surface of the semiconductor solar cell substrate (66) is coated with a light receiving surface side insulating film (61) composed of an inorganic insulating material where the cationic component principally comprising silicon, and the light receiving surface side insulating film (61) is a low hydrogen content inorganic insulating film containing less than 10 atm % of hydrogen. A solar cell having an insulating film exhibiting excellent passivation effect insusceptible to aging can thereby be provided.
摘要:
A solar cell module 60 has a plurality of solar cells 14 having a plurality of parallel grooves 8 on the individual light-receiving surfaces thereof, each of the grooves having an electrode 5 for extracting output on the inner side face (electrode-forming inner side face) on one side in the width-wise direction thereof; and a support 10, 50 for supporting the solar cells 14 in an integrated manner so as to direct the light-receiving surfaces upward. The annual power output can be increased by adjusting the direction of arrangement of the electrode-forming inner side faces of the grooves 8 while taking the angle of inclination β of the light-receiving surface of the individual as-installed solar cells 14 relative to the horizontal plane and the latitude δ of the installation site of the solar cell module into consideration.
摘要:
A fundus camera includes a main unit equipped with an illuminating optical system for illuminating the fundus of an eye to be inspected and a photographing optical system for photographing the fundus, an observation optical system for determining whether or not the distance between the main unit and the eye is equal to a proper working distance, an alignment index projecting system, and a driving mechanism for moving a light guide along an optical axis to change a working distance in the case of photographing the central part of the fundus and in the case of photographing a peripheral part of the fundus.
摘要:
An ophthalmological photographing instrument for fluorescent photograph comprising a device for irradiating illuminating light to a fundus of an eye to be tested, a device for projecting target luminous light to the eye, an image receiving device capable of receiving a reflection image of the target luminous flux reflected by the eye together with an image of the fundus of the eye, and observation/photographing means for receiving and photographing an image of the eye received by the image receiving device, wherein the ophthalmological photographing instrument further comprises a moving picture recording device into which the received image output coming from the image receiving device is input, a timer for counting time which has elapsed since the time when a fluorescent agent for the use of the fluorescent photograph has been injected into a vein, and a quenching device for reducing or quenching the target luminous flux after the passage of a predetermined time from the time when the injection of the fluorescent agent has been made, based on an output of the timer.
摘要:
A fundus camera capable of adjusting a working distance between a camera body and a subject's eye quickly and easily with high accuracy and capable of observing an eye fundus image in a field of view and at a magnification each substantially same as those selected when an eye fundus is photographed. To adjust the working distance quickly and easily with high accuracy, the fundus camera has an optical member 59 provided in a projecting optical system 56 for projecting alignment light onto a subject's eye E. The optical member 59 projects split alignment images onto the eye E when the working distance W is out of a predetermined proper distance. To observe the eye fundus image in the substantially same field of view and at the substantially same magnification as those selected when the eye fundus is photographed, the fundus camera has a device for, according to power variation, changing a state of illumination light illuminating the eye E. In the fundus camera, the alignment light is projected onto the eye E, the alignment light reflected by the eye E is once converged on a point R of a photographic optical path 31 conjugate with the fundus Ef of the eye E, the reflected alignment light converged thereon is guided to a TV monitor 53 through a variable power lens 53, and the state of the illumination light illuminating the eye E is changed by the changing device to observe and photograph the eye fundus Ef.
摘要:
Pitch that is obtained from naphthalene derivatives having at least one methyl group and the content of an optically anisotropic phase in which is substantially 100% is disclosed. This mesophase pitch has a H/C atomic ratio of about 0.5-1.0 and an aromatic carbon ratio (fa) of at least about 0.7, contains methylic carbon in an amount of at least about 4% of the total carbon atoms, and has a softening point of 200.degree.-250.degree. C. The pitch contains about 12-20 mole % of molecules having an average molecular weight of less than about 600, about 55-70 mole % of molecules having an average molecular weight of from about 600-1,500 and about 20-30 mole % of molecules having an average molecular weight of higher than about 1,500. Fibers melt spun from this mesophase pitch can be converted to carbon or graphite fibers having high strength and modulus of elasticity by a heat treatment which consists of heating to a temperature of 200.degree.-350.degree. C. in an air atmosphere, then heating to about 1,000.degree. C. or higher in an inert gas atmosphere. Such mesophase pitch is produced by polymerizing a naphthalene derivative having at least one methyl group for about 5-300 minutes at a temperature of about 180.degree.-400.degree. C. and at a pressure of about 5-100 atmosphere in the presence of about 0.1-20 moles of HF and about 0.05-1.0 mole of BF.sub.3 per mole of the naphthalene derivative.