Abstract:
A method for processing a powder material includes feeding a powder material through an additive processing machine to deposit multiple layers of the powder material onto one another and using an energy beam to thermally fuse selected portions of the layers to one another with reference to data relating to a particular cross-section of an article being formed. The powder material has spherical metal particles and a spaced-apart distribution of ceramic nanoparticles attached to the surfaces of the particles. The ceramic nanoparticles form a dispersion of reinforcement through the formed article.
Abstract:
A method and system for coating metallic powder particles is provided. The method includes: disposing an amount of metallic powder particulates within a fluidizing reactor; removing moisture adhered to the powder particles disposed within the reactor using a working gas; coating the powder particles disposed within the reactor using a precursor gas; and purging the precursor gas from the reactor using the working gas.
Abstract:
A conductive polymer corrosion protective composite is provided which may be used as a coating for imparting corrosion protection to structures such as turbine engine components. The composite comprises an organic-inorganic component and corrosion inhibitive pigments comprising an anodic corrosion inhibitor and a cathodic corrosion inhibitor. The anodic corrosion inhibitor may be selected from the group consisting of compounds of vanadium, molybdenum, tungsten, and mixtures thereof. The cathodic corrosion inhibitor may be selected from the group consisting of cerium, neodymium, praseodymium, and mixtures thereof.
Abstract:
A coating fabrication method includes providing engineered granules and thermally consolidating the engineered granules on a substrate to form a silicate-resistant barrier coating. Each of the engineered granules is an aggregate of at least one refractory matrix region and at least one calcium aluminosilicate additive region (CAS additive region) attached with the at least one refractory matrix region. In the thermal consolidation, the refractory matrix region from the engineered granules form grains of a refractory matrix of the silicate-resistant barrier coating and the CAS additive region from the engineered granules form CAS additives that are dispersed in grain boundaries between the grains.
Abstract:
A process for densification of a ceramic matrix composite comprises forming a reinforcing ceramic continuous fiber stack having a central zone bounded by an outer zone adjacent; locating first particles within the central zone; coating the first particles and the ceramic fibers with silicon carbide through chemical vapor infiltration; locating second particles within the outer zone; coating the second particles and the ceramic fibers with silicon carbide through chemical vapor infiltration; forming the stack into a predetermined three dimensional shape; and densifying the stack.
Abstract:
A method of selecting a corrosion-inhibiting substance includes selecting a corrosion-inhibiting substance to include a non-tungstate anodic corrosion inhibitor with respect to an amount of zinc in an aluminum alloy substrate that is to be coated with the corrosion-inhibiting substance.
Abstract:
A method of coating metallic powder particles includes disposing an amount of metallic powder particles in a fluidizing reactor and removing moisture adhered to the powder particles within the reactor with a working gas at an elevated temperature for a predetermined time. The method further includes coating the powder particles in the reactor with silicon present within the precursor gas at an elevated temperature for a predetermined time and purging the precursor gas from the reactor using the working gas.
Abstract:
A method and system for coating metallic powder particles is provided. The method includes: disposing an amount of metallic powder particulates within a fluidizing reactor; removing moisture adhered to the powder particles disposed within the reactor using a working gas; coating the powder particles disposed within the reactor using a precursor gas; and purging the precursor gas from the reactor using the working gas.
Abstract:
A method and system for coating metallic powder particles is provided. The method includes: disposing an amount of metallic powder particulates within a fluidizing reactor; removing moisture adhered to the powder particles disposed within the reactor using a working gas; coating the powder particles disposed within the reactor using a precursor gas; and purging the precursor gas from the reactor using the working gas.
Abstract:
An environmental barrier coating system for a turbine component, including an environmental barrier layer applied to a turbine component substrate containing silicon; the environmental barrier layer comprising an oxide matrix surrounding a fiber-reinforcement structure and a self-healing phase interspersed throughout the oxide matrix; wherein the fiber-reinforcement structure comprises at least one first fiber bundle oriented along a load bearing stress direction of said turbine component substrate; wherein the fiber-reinforcement structure comprises at least one second fiber bundle oriented orthogonal to the at least one first fiber bundle orientation; wherein the fiber-reinforcement structure comprises at least one third fiber woven between the at least one first fiber bundle and the at least one second fiber bundle.