Abstract:
A method of selecting a corrosion-inhibiting substance includes selecting a corrosion-inhibiting substance to include a non-tungstate anodic corrosion inhibitor with respect to an amount of zinc in an aluminum alloy substrate that is to be coated with the corrosion-inhibiting substance.
Abstract:
A sealing process includes applying a first reactant to a substrate having a porous structure, the first reactant comprising a chromium (III) precursor and a transition metal precursor and applying a second reactant to the first reactant, the second reactant comprising a rare earth element precursor and an alkaline earth element precursor to form reservoirs of trivalent chromium in pore space of the porous structure, and a physical barrier over the substrate and the reservoirs.
Abstract:
A method of coating a metal article is disclosed that includes immersing a metal article having an exterior anodized layer in a bath containing a chemically active corrosion inhibitor, and applying a voltage to the article during the immersing, the voltage driving the chemically active corrosion inhibitor from the bath into the exterior anodized layer. An article is also disclosed that has a substrate comprising a metal, and a porous anodized layer formed on an exterior surface of the substrate that is infiltrated with a chemically active corrosion inhibitor, the anodized layer having an inward-facing region and an outward-facing region, the anodized layer having a greater concentration of chemically active corrosion inhibitors in the inward-facing region than in the outward-facing region.
Abstract:
A process of preventing crack formation in chemical conversion coating comprising providing a substrate; introducing a chemical conversion coating material; adding an additive containing a binder to the conversion coating material; and coating the substrate with the chemical conversion coating and the additive.
Abstract:
The present disclosure relates generally to a fan blade assembly. In an embodiment, the fan blade assembly includes an airfoil having a forward edge covered by a sheath. The airfoil and the sheath are made from dissimilar conductive materials. A sacrificial anode layer is applied to at least a portion of the sheath so that the sacrificial anode layer will corrode instead of the airfoil.
Abstract:
A coated metal component includes an aluminum alloy substrate and a protective aluminum coating on a substrate. An interfacial boundary layer between the coating and substrate enhances coating adhesion. The boundary layer includes isolated regions of copper or tin produced by a double zincating process. The protective aluminum coating exhibits improved adhesion and is formed by electrodeposition in an ionic liquid.
Abstract:
A method of growing a hierarchically structured anodized film to an aluminum substrate including growing a Phosphoric Acid Anodizing (PAA) film layer to an aluminum substrate and growing a multiple of Tartaric-Sulfuric Acid Anodizing (TSA) film layers under the Phosphoric Acid Anodizing (PAA) film layer.
Abstract:
During a material removal method, a component is received that includes a component body and a coating on the component body. The component body includes metallic first material. The coating includes second material that is different from the first material. A solution is received that includes nitric acid and hydrogen peroxide. At least a portion of the coating is subjected to the solution in order to remove at least some of the second material from the component.
Abstract:
The present disclosure relates generally to a fan blade assembly. In an embodiment, the fan blade assembly includes an airfoil having a forward edge covered by a sheath. The airfoil and the sheath are made from dissimilar conductive materials. A sacrificial anode layer is applied to at least a portion of the sheath so that the sacrificial anode layer will corrode instead of the airfoil.
Abstract:
A method of growing a hierarchically structured anodized film to an aluminum substrate including growing a Phosphoric Acid Anodizing (PAA) film layer to an aluminum substrate and growing a multiple of Tartaric-Sulfuric Acid Anodizing (TSA) film layers under the Phosphoric Acid Anodizing (PAA) film layer.