摘要:
An isolation layer is formed on a substrate of a semiconductor wafer. At least one recess is formed in the isolation layer by way of a photo-etching-process. A two stage in-situ doped deposition process is then performed to form a first doped amorphous silicon (&agr;-Si) layer and a second doped amorphous silicon (&agr;-Si) layer doping concentration of the second doped amorphous silicon (&agr;-Si) layer being less than that of the first doped amorphous silicon layer. A dielectric layer is formed to fill the recess, and a planarization process removes portions of the second doped amorphous silicon layer, the first doped amorphous silicon layer and the dielectric layer on the surface of the isolation layer. Finally, the dielectric layer and the isolation layer are removed, and a hemi-spherical grain (HSG) process is performed to form a rough surface with a plurality of hemi-spherical grains on the surface of the second doped amorphous silicon layer.
摘要:
The semiconductor wafer includes a substrate, a gate positioned on the substrate, a cap layer positioned on top of the gate, and a silicon oxide spacer positioned around both the gate and the cap layer. Firstly, a dielectric layer is formed on the semiconductor wafer to cover the gate. An etching back process is then performed to remove portions of both the dielectric layer and the silicon oxide spacer. Finally, a silicon nitride spacer is formed on the dielectric layer around the cap layer. The silicon nitride spacer is positioned on the surface of the dielectric layer and functions in reducing stress between the silicon nitride spacer and the substrate.
摘要:
A cylindrical capacitor structure and a corresponding method of manufacture. To form the cylindrical capacitor, a conductive section, an etching stop layer, a first insulation layer, a bit line structure and a second insulation layer are sequentially formed over a substrate. A portion of the second insulation layer and the first insulation layer is removed until the etching stop layer is exposed. Ultimately, a plurality of gap-connected cylindrical openings and node contact openings between spacers are sequentially formed. Conductive spacers are formed on the sidewalls of the cylindrical openings and the node contact openings. In the meantime, material similar to the conductive spacers fills the small gaps, thereby forming an upper electrode for the capacitor. A dielectric layer is formed over the capacitor electrode. The exposed etching stop layer at the bottom of the contact opening is removed to expose the conductive section above the substrate. Finally, conductive material is deposited into the node contact openings and the cylindrical openings to become the lower electrodes and the node contacts respectively.
摘要:
A method of manufacturing a dynamic random access memory cell. A substrate having a transistor therein is provided. A first dielectric layer is formed over the substrate and the transistor. A bit line having a cap layer thereon is formed over the first dielectric layer. A protective layer is formed over the substrate covering the bit line. A second dielectric layer is formed over the protective layer. The second dielectric layer is etched in a self-aligned process. The etching continues penetrating the protective layer and the first dielectric layer until the substrate is exposed so that a node contact opening and an opening for forming the lower electrode of a capacitor are formed at the same time. Thereafter, polysilicon material is deposited into the node contact opening and the lower electrode opening to form a polysilicon layer. The upper surface of the polysilicon layer is slightly below the lower electrode opening. A spacer is formed on the sidewalls of the lower electrode opening above the polysilicon layer. Using the spacers as a mask, the polysilicon layer is etched to form a lower electrode with a recess groove above the node contact opening. The second dielectric layer and the spacers are removed. To complete the fabrication of the DRAM cell capacitor, a dielectric layer is formed over the lower electrode and an upper electrode is formed over the dielectric layer.
摘要:
A method for forming a semiconductor dielectric layer comprising the steps of providing a substrate having a plurality of semiconductor devices already formed thereon, and then forming a first dielectric layer over the substrate. Next, a silicon oxy-nitride layer is formed over the first dielectric layer, and finally a second dielectric layer is formed over the silicon oxy-nitride layer.
摘要:
This invention provides a method of forming a landing pad on the drain and source of a MOS transistor. The MOS transistor is formed on a silicon substrate of a semiconductor wafer and comprises a gate on the silicon substrate with a spacer around its periphery portion, a drain and a source on the surface of the silicon substrate and on opposite sides of the gate. The method comprises forming a conductive layer of uniform thickness above the drain or source of the MOS transistor. The conductive layer is used as the landing pads for the drain or source. The height of the conductive layer is lower than that of the spacer surrounding the gate so that the spacer electrically isolates the gate and the conductive layer.
摘要:
A structure of a polysilicon via that includes a semiconductor substrate, a conducting layer on the substrate, a dielectric layer on the conducting layer, a polysilicon plug formed in the dielectric layer, a polysilicon layer on the polysilicon plug, and a silicide layer formed on the polysilicon layer. The polysilicon layer is electrically connected to the conducting layer through the polysilicon plug. The structure of a polysilicon via according to the invention prevents the occurrence of leakage currents in the presence of misalignment in the follow-up photolithography process.
摘要:
A method for fabricating a type of bit line is able to form a small-sized bit line. In this method a first dielectric layer, a first conductive layer, and a second conductive layer are formed on a substrate in sequence. The first dielectric layer is exposed, then a second conducting wire and a first conducting wire are formed, respectively. A portion of the second conducting wire is removed by a cleaning liquid, so that the feature size of the second conducting wire is less than the feature size of the first conducting wire. An oxide layer is formed on the second conducting wire and the first conducting wire by performing a thermal treatment. The feature size of the second conducting wire is approximately equal to the feature size of the first conducting wire.
摘要:
A method for fabricating a double-cylinder capacitor is provided. The double-cylinder capacitor has a storage electrode having dual, concentric cylinder structures. The dielectric layer and the top electrode are formed in sequence over the bottom electrode. The storage area is thus enlarged by the double-cylinder capacitor of the invention. Thus, the capacitance of the capacitor can be effectively increased.
摘要:
A semiconductor fabrication method is provided for forming an opening in a dielectric layer, which can help downsize the critical dimension of the resulting opening through the use of a photoresist layer with silylated sidewall spacers. By this method, the first step is to coat a base photoresist layer over the dielectric layer. Next, a photolithographic process is performed to remove a selected part of the base photoresist layer. Then, a conformational coating process is performed to coat a silylatable photoresist layer over the base photoresist layer to a controlled predefined thickness. Subsequently, a silylation process is performed on the silylatable photoresist layer so as to form a silylated photoresist layer over all the exposed surfaces of the base photoresist layer. After this, a first etching process is performed on the silylated photoresist layer, with the remaining portions of the silylated photoresist layer serving as silylated sidewall spacers on the base photoresist layer. Then, with the combined structure of the base photoresist layer and the overlying silylated sidewall spacers serving as mask, a second etching process is performed on the dielectric layer to etch away the unmasked part of the dielectric layer to form the intended opening in the dielectric layer.